欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2022, Vol. 31 ›› Issue (3): 144-155.DOI: 10.11686/cyxb2020595

• 研究论文 • 上一篇    

带幅设计对玉米/苜蓿间作群体光环境特征及光能利用效率的影响

吴玉环(), 王自奎(), 刘亚男, 马千虎   

  1. 兰州大学草地农业科技学院,兰州大学草地农业生态系统国家重点实验室,兰州大学草业科学国家级实验教学示范中心,甘肃 兰州 730020
  • 收稿日期:2020-12-30 修回日期:2021-03-08 出版日期:2022-03-20 发布日期:2022-01-15
  • 通讯作者: 王自奎
  • 作者简介:Corresponding author. E-mail: wzk@lzu.edu.cn
    吴玉环(1997-),女,山西临汾人,在读硕士。E-mail: wuyh2018@lzu.edu.cn
  • 基金资助:
    国家自然科学基金(31871560);甘肃省重大科技计划(21ZD4NA012);国家牧草产业技术体系(CARS-34);中央高校基本科研业务费(lzujbky-2020-19)

Effects of row configuration on characteristics of the light environment and light use efficiency in maize/alfalfa intercropping

Yu-huan WU(), Zi-kui WANG(), Ya-nan LIU, Qian-hu MA   

  1. College of Pastoral Agriculture Science and Technology,State Key Laboratory of Grassland Agro-Ecosystem,National Demonstration Center for Experimental Grassland Science Education,Lanzhou University,Lanzhou 730020,China
  • Received:2020-12-30 Revised:2021-03-08 Online:2022-03-20 Published:2022-01-15
  • Contact: Zi-kui WANG

摘要:

探究间作带幅设计对玉米/苜蓿间作群体光环境特征、产量及光能利用效率(LUE)的影响,提出黄土高原旱作条件下玉米/苜蓿间作群体最佳带幅比例。研究设置了玉米单作(SM)、紫花苜蓿单作(SA)以及玉米/紫花苜蓿1∶2(I12)、2∶2(I22)和2∶4(I24)间作5种种植模式,并采用田间试验和数学模拟相结合的方法,分别测定了玉米和苜蓿的干物质产量及作物冠层光合有效辐射(PAR)等指标;建立了考虑光线入射角度和群体冠层结构几何关系的玉米/苜蓿间作群体辐射传输模型,并用实测值对其进行了验证。试验结果表明,在2018年,单作处理的苜蓿干物质产量显著高于间作处理(P<0.05),而在2019年各间作处理苜蓿的干物质分别比单作高197.8、180.3和197.0 g?m-2;处理I12、I22和I24两年总的玉米生物量比SM处理高12.1%、0.9%和23.9%。所有间作处理的土地当量比在2019年均大于1.0,表现出间作优势。辐射传输模型可准确模拟玉米/苜蓿间作群体冠层底部的光合有效辐射,间作群体光合有效辐射模拟值与实测值的平均绝对误差和均方根误差分别为59.0和66.6 μmol?m-2?s-1。除玉米和苜蓿生育前期及玉米收获后,不同间作处理苜蓿群体冠层上方的PAR均低于单作苜蓿。2018和2019年I12、I22和I24间作处理玉米的光能利用效率分别比单作处理高52.5%、9.3%、51.7%和28.5%、9.6%、21.0%,而间作苜蓿的LUE仅在2019年显著高于单作19.2%、32.4%和20.9%(P<0.05)。因此,合理的玉米/苜蓿间作带幅搭配可改善苜蓿的光照环境,提高其光能利用效率,尤其是玉米/紫花苜蓿2∶4间作群体光能利用效率和产量优势显著,建议在具有类似气候的地区推广种植。

关键词: 玉米/苜蓿间作, 光合有效辐射, 辐射传输模型, 光能截获, 光能利用效率

Abstract:

This research explored the effects of intercrop row configuration on light environment characteristics, yield, and light use efficiency (LUE) in maize/alfalfa intercropping, in order to provide recommendations for optimal planting pattern for farm use on the Loess Plateau. Five planting patterns were investigated: sole alfalfa (SA), sole forage maize (SM), one row of maize intercropped with two rows of alfalfa (I12), two rows of maize intercropped with two rows of alfalfa (I22) and two rows of maize intercropped with four rows of alfalfa (I24), and the research included field experiments (in 2018 and 2019), and mathematical simulation. The dry matter yield and canopy transmission of photosynthetically active radiation (PAR) for the five planting patterns were measured. A light transmission model considering the geometrical relationship between light angle and canopy structure was developed to simulate PAR transmission in each monoculture or intercropping system and measured values in field experiments were used to validate the light transmission model. The yield of monoculture alfalfa was significantly greater than that of intercropped alfalfa in 2018 (P<0.05). However, in 2019 the production of alfalfa in I12, I22, and I24 treatments was greater (197.8, 180.3 and 197.0 g·m-2, respectively) than that in SA treatment (1473.5 g·m-2). The total dry matter yield of maize in I12, I22 and I24 treatments, averaged over two years, was increased by 12.1%, 0.9% and 23.9%, respectively, compared with SM. The land equivalent ratio (LER) of all intercropped sowings was greater than 1.0 in 2019, indicating intercropping advantages. The radiation transmission model accurately simulated the PAR at the bottom of the maize/alfalfa canopy in intercropping systems. The mean absolute errors of simulation results and the corresponding root mean square errors were 59.0 and 66.6 μmol·m-2·s-1, respectively. The PAR reaching the top of the alfalfa canopy in intercropped plantings was significantly lower than that in SA (P<0.05). LUE of maize in I12, I22 and I24 were calculated as 52.5%, 9.3% and 51.7%, respectively, higher than that of SM in 2018, and 28.5%, 9.6% and 21.0%, respectively, higher in 2019 (P<0.05). In 2019,LUE of intercropped alfalfa in I12, I22 and I24 were 19.2%, 32.4% and 20.9% higher (P<0.05), respectively, than those of SA. In summary, appropriate maize/alfalfa intercropping patterns improved the light environment of intercropped alfalfa and enhanced crop LUE. It was found that the planting configuration I24 was optimal for light transmission and system productivity. Thus, the I24 planting regime is recommended be applied in areas with similar climate.

Key words: maize and alfalfa intercropping, photosynthetically active radiation, light transmission model, light interception, light use efficiency