草业学报 ›› 2022, Vol. 31 ›› Issue (3): 144-155.DOI: 10.11686/cyxb2020595
• 研究论文 • 上一篇
收稿日期:
2020-12-30
修回日期:
2021-03-08
出版日期:
2022-03-20
发布日期:
2022-01-15
通讯作者:
王自奎
作者简介:
Corresponding author. E-mail: wzk@lzu.edu.cn基金资助:
Yu-huan WU(), Zi-kui WANG(), Ya-nan LIU, Qian-hu MA
Received:
2020-12-30
Revised:
2021-03-08
Online:
2022-03-20
Published:
2022-01-15
Contact:
Zi-kui WANG
摘要:
探究间作带幅设计对玉米/苜蓿间作群体光环境特征、产量及光能利用效率(LUE)的影响,提出黄土高原旱作条件下玉米/苜蓿间作群体最佳带幅比例。研究设置了玉米单作(SM)、紫花苜蓿单作(SA)以及玉米/紫花苜蓿1∶2(I12)、2∶2(I22)和2∶4(I24)间作5种种植模式,并采用田间试验和数学模拟相结合的方法,分别测定了玉米和苜蓿的干物质产量及作物冠层光合有效辐射(PAR)等指标;建立了考虑光线入射角度和群体冠层结构几何关系的玉米/苜蓿间作群体辐射传输模型,并用实测值对其进行了验证。试验结果表明,在2018年,单作处理的苜蓿干物质产量显著高于间作处理(P<0.05),而在2019年各间作处理苜蓿的干物质分别比单作高197.8、180.3和197.0 g?m-2;处理I12、I22和I24两年总的玉米生物量比SM处理高12.1%、0.9%和23.9%。所有间作处理的土地当量比在2019年均大于1.0,表现出间作优势。辐射传输模型可准确模拟玉米/苜蓿间作群体冠层底部的光合有效辐射,间作群体光合有效辐射模拟值与实测值的平均绝对误差和均方根误差分别为59.0和66.6 μmol?m-2?s-1。除玉米和苜蓿生育前期及玉米收获后,不同间作处理苜蓿群体冠层上方的PAR均低于单作苜蓿。2018和2019年I12、I22和I24间作处理玉米的光能利用效率分别比单作处理高52.5%、9.3%、51.7%和28.5%、9.6%、21.0%,而间作苜蓿的LUE仅在2019年显著高于单作19.2%、32.4%和20.9%(P<0.05)。因此,合理的玉米/苜蓿间作带幅搭配可改善苜蓿的光照环境,提高其光能利用效率,尤其是玉米/紫花苜蓿2∶4间作群体光能利用效率和产量优势显著,建议在具有类似气候的地区推广种植。
吴玉环, 王自奎, 刘亚男, 马千虎. 带幅设计对玉米/苜蓿间作群体光环境特征及光能利用效率的影响[J]. 草业学报, 2022, 31(3): 144-155.
Yu-huan WU, Zi-kui WANG, Ya-nan LIU, Qian-hu MA. Effects of row configuration on characteristics of the light environment and light use efficiency in maize/alfalfa intercropping[J]. Acta Prataculturae Sinica, 2022, 31(3): 144-155.
图4 在2018和2019年不同间作比例下苜蓿的干物质量图中不同小写字母表示在 P<0.05 水平上差异显著,下同。Different lowercase letters indicate significant differences at P<0.05, the same below.
Fig.4 Dry matter of alfalfa under different intercropping systems in 2018 and 2019
年份 Year | 种植模式 Planting patterns | 干物质量 Dry matter (t?hm-2) | 土地当量比 Land equivalent ratio (LER) | ||||
---|---|---|---|---|---|---|---|
玉米 Maize | 苜蓿 Alfalfa | 系统 Total | 玉米 Maize | 苜蓿 Alfalfa | 系统 Total | ||
2018 | SM | 27.49a | 27.49a | ||||
SA | 10.02a | 10.02d | |||||
I12 | 15.59c | 2.91c | 18.51c | 0.57 | 0.29 | 0.86 | |
I22 | 17.76b | 2.06d | 19.81b | 0.65 | 0.21 | 0.85 | |
I24 | 17.44b | 4.41b | 21.86b | 0.63 | 0.44 | 1.08 | |
2019 | SM | 28.59a | 28.59a | ||||
SA | 14.73a | 14.73d | |||||
I12 | 12.99c | 9.12b | 22.11c | 0.45 | 0.62 | 1.07 | |
I22 | 17.59b | 6.20c | 23.80b | 0.62 | 0.42 | 1.04 | |
I24 | 14.13c | 9.11b | 23.24c | 0.49 | 0.62 | 1.11 |
表1 不同玉米/苜蓿间作处理下的系统生物量与土地当量比
Table 1 Total dry matter, land equivalent ratio under different maize/alfalfa relay strip intercropping systems
年份 Year | 种植模式 Planting patterns | 干物质量 Dry matter (t?hm-2) | 土地当量比 Land equivalent ratio (LER) | ||||
---|---|---|---|---|---|---|---|
玉米 Maize | 苜蓿 Alfalfa | 系统 Total | 玉米 Maize | 苜蓿 Alfalfa | 系统 Total | ||
2018 | SM | 27.49a | 27.49a | ||||
SA | 10.02a | 10.02d | |||||
I12 | 15.59c | 2.91c | 18.51c | 0.57 | 0.29 | 0.86 | |
I22 | 17.76b | 2.06d | 19.81b | 0.65 | 0.21 | 0.85 | |
I24 | 17.44b | 4.41b | 21.86b | 0.63 | 0.44 | 1.08 | |
2019 | SM | 28.59a | 28.59a | ||||
SA | 14.73a | 14.73d | |||||
I12 | 12.99c | 9.12b | 22.11c | 0.45 | 0.62 | 1.07 | |
I22 | 17.59b | 6.20c | 23.80b | 0.62 | 0.42 | 1.04 | |
I24 | 14.13c | 9.11b | 23.24c | 0.49 | 0.62 | 1.11 |
图6 不同间作比例下,作物冠层底部PAR实测值与模拟值的比较
Fig.6 Comparison between measured and simulated values of PAR at crop canopy bottom under different intercropping ratios
时间 Time | 平均绝对误差 MAE | 均方根误差 RMSE | ||||
---|---|---|---|---|---|---|
I12 | I22 | I24 | I12 | I22 | I24 | |
8:00 | 7.4 | 73.1 | 78.2 | 8.8 | 79.0 | 91.3 |
10:00 | 22.9 | 23.9 | 17.9 | 24.6 | 24.8 | 18.6 |
12:00 | 116.8 | 31.8 | 54.7 | 130.1 | 37.6 | 55.3 |
14:00 | 127.4 | 65.8 | 20.5 | 166.5 | 68.4 | 21.0 |
16:00 | 55.9 | 130.8 | 104.7 | 59.2 | 131.0 | 132.2 |
18:00 | 17.4 | 47.8 | 64.3 | 17.7 | 53.8 | 79.2 |
表2 I12、I22和I24间作群体的模拟值与实测值的平均绝对误差和均方根误差
Table 2 The MAE and RMSE of simulated values and measured values of I12, I22 and I24 intercropping systems (μmol?m-2?s-1)
时间 Time | 平均绝对误差 MAE | 均方根误差 RMSE | ||||
---|---|---|---|---|---|---|
I12 | I22 | I24 | I12 | I22 | I24 | |
8:00 | 7.4 | 73.1 | 78.2 | 8.8 | 79.0 | 91.3 |
10:00 | 22.9 | 23.9 | 17.9 | 24.6 | 24.8 | 18.6 |
12:00 | 116.8 | 31.8 | 54.7 | 130.1 | 37.6 | 55.3 |
14:00 | 127.4 | 65.8 | 20.5 | 166.5 | 68.4 | 21.0 |
16:00 | 55.9 | 130.8 | 104.7 | 59.2 | 131.0 | 132.2 |
18:00 | 17.4 | 47.8 | 64.3 | 17.7 | 53.8 | 79.2 |
图8 2019年苜蓿整个生育期内冠层顶部PAR(IA)与总PAR的比值(I0)
Fig.8 Dynamic characteristics of ratio of photosynthetically active radiation in alfalfa upper layer (IA) to total radiation (I0) during the whole growth seasons in 2019
年份 Year | 处理 Treatments | 苜蓿Alfalfa | 玉米 Maize | 系统 System | |||
---|---|---|---|---|---|---|---|
第1茬1st cutting | 第2茬2nd cutting | 第3茬3rd cutting | 总计Total | ||||
2018 | SA | 202.4 | 275.0 | 477.4 | 477.4 | ||
SM | 546.0 | 546.0 | |||||
I12 | 234.2 | 179.6 | 413.9 | 447.2 | 429.0 | ||
I22 | 182.4 | 124.6 | 307.0 | 516.5 | 438.0 | ||
I24 | 228.9 | 189.1 | 417.9 | 503.0 | 456.5 | ||
2019 | SA | 388.4 | 309.8 | 348.2 | 1046.5 | 1046.5 | |
SM | 606.4 | 606.4 | |||||
I12 | 397.4 | 308.8 | 289.7 | 995.9 | 471.8 | 757.7 | |
I22 | 401.5 | 300.5 | 185.3 | 887.3 | 545.4 | 673.6 | |
I24 | 416.1 | 312.7 | 252.7 | 981.6 | 545.3 | 783.3 |
表3 2018和2019年不同种植模式苜蓿和玉米的光能截获量
Table 3 The PAR interception of alfalfa and maize by different cropping systems during 2018 and 2019 (MJ?m-2)
年份 Year | 处理 Treatments | 苜蓿Alfalfa | 玉米 Maize | 系统 System | |||
---|---|---|---|---|---|---|---|
第1茬1st cutting | 第2茬2nd cutting | 第3茬3rd cutting | 总计Total | ||||
2018 | SA | 202.4 | 275.0 | 477.4 | 477.4 | ||
SM | 546.0 | 546.0 | |||||
I12 | 234.2 | 179.6 | 413.9 | 447.2 | 429.0 | ||
I22 | 182.4 | 124.6 | 307.0 | 516.5 | 438.0 | ||
I24 | 228.9 | 189.1 | 417.9 | 503.0 | 456.5 | ||
2019 | SA | 388.4 | 309.8 | 348.2 | 1046.5 | 1046.5 | |
SM | 606.4 | 606.4 | |||||
I12 | 397.4 | 308.8 | 289.7 | 995.9 | 471.8 | 757.7 | |
I22 | 401.5 | 300.5 | 185.3 | 887.3 | 545.4 | 673.6 | |
I24 | 416.1 | 312.7 | 252.7 | 981.6 | 545.3 | 783.3 |
年份 Year | 处理 Treatments | 苜蓿Alfalfa | 玉米 Maize | 系统 System | |||
---|---|---|---|---|---|---|---|
第1茬1st cutting | 第2茬2nd cutting | 第3茬3rd cutting | 总计Total | ||||
2018 | SA | 2.76a | 1.61b | 2.10a | 2.10e | ||
SM | 5.03c | 5.03a | |||||
I12 | 1.41d | 1.13c | 1.29d | 7.67a | 4.31d | ||
I22 | 1.73c | 1.87a | 1.79c | 5.50b | 4.52c | ||
I24 | 1.95b | 1.92a | 1.94b | 7.63a | 4.79b | ||
2019 | SA | 1.76b | 1.41a | 1.01b | 1.41c | 1.41d | |
SM | 4.71c | 4.71a | |||||
I12 | 2.36a | 1.55a | 0.88b | 1.72ab | 6.05a | 2.92c | |
I22 | 2.32a | 1.54a | 1.40a | 1.91a | 5.16bc | 3.53b | |
I24 | 1.97b | 1.80a | 1.15ab | 1.68b | 5.70ab | 2.97c |
表4 2018和2019年苜蓿和玉米的光能利用效率
Table 4 The light use efficiency of alfalfa and maize in 2018 and 2019 (g?MJ-1)
年份 Year | 处理 Treatments | 苜蓿Alfalfa | 玉米 Maize | 系统 System | |||
---|---|---|---|---|---|---|---|
第1茬1st cutting | 第2茬2nd cutting | 第3茬3rd cutting | 总计Total | ||||
2018 | SA | 2.76a | 1.61b | 2.10a | 2.10e | ||
SM | 5.03c | 5.03a | |||||
I12 | 1.41d | 1.13c | 1.29d | 7.67a | 4.31d | ||
I22 | 1.73c | 1.87a | 1.79c | 5.50b | 4.52c | ||
I24 | 1.95b | 1.92a | 1.94b | 7.63a | 4.79b | ||
2019 | SA | 1.76b | 1.41a | 1.01b | 1.41c | 1.41d | |
SM | 4.71c | 4.71a | |||||
I12 | 2.36a | 1.55a | 0.88b | 1.72ab | 6.05a | 2.92c | |
I22 | 2.32a | 1.54a | 1.40a | 1.91a | 5.16bc | 3.53b | |
I24 | 1.97b | 1.80a | 1.15ab | 1.68b | 5.70ab | 2.97c |
1 | Liu J H, Zeng Z H, Jiao L X, et al. Intercropping of different silage maize cultivars and alfalfa. Acta Agronomica Sinica, 2006, 32(1):125-137. |
刘景辉, 曾昭海, 焦立新, 等. 不同青贮玉米品种与紫花苜蓿的间作效应. 作物学报, 2006, 32(1): 125-137. | |
2 | Zhang Z, Whish J P M, Bell L W, et al. Forage production, quality and water-use-efficiency of four warm-season annual crops at three sowing times in the Loess Plateau region of China. European Journal of Agronomy, 2017, 84: 84-94. |
3 | Brooker R W, Bennett A E, Cong W, et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.New Phytologist, 2015, 206(1): 107-117. |
4 | Sun T, Li Z, Wu Q, et al. Effects of alfalfa intercropping on crop yield, water use efficiency, and overall economic benefit in the corn belt of Northeast China.Field Crops Research, 2017, 216: 109-119. |
5 | Liu X, Rahman T, Song C, et al. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Research, 2018, 224: 91-101. |
6 | Jiao N Y, Li Y H, Yang X, et al. Effects of maize/peanut intercropping row ratio and phosphate fertilizer on photosynthetic characteristics of maize. Chinese Journal of Applied Ecology, 2016, 27(9): 2959-2967. |
焦念元, 李亚辉, 杨潇, 等. 玉米/花生间作行比和施磷对玉米光合特性的影响. 应用生态学报, 2016, 27(9): 2959-2967. | |
7 | Lu H D, Jia Z K, Yang B P, et al. Different strip intercropping of grain-grass on sloping field in dry areas of south Ningxia. Acta Ecologica Sinica, 2009, 30(21): 5941-5948. |
路海东, 贾志宽, 杨宝平, 等. 宁夏南部旱区坡地不同粮草带比间作种植模式比较. 生态学报, 2009, 30(21): 5941-5948. | |
8 | Zhao Y P, Zhang E H, Pan Y D, et al. Difference of canopy photophysiological characters among different genotypes of malting barley. Journal of Triticeae Crops, 2008, 28(6): 1048-1053. |
赵永平, 张恩和, 潘永东, 等. 不同基因型啤酒大麦冠层光合生理特性的差异. 麦类作物学报, 2008, 28(6): 1048-1053. | |
9 | Jin J, Liu X B, Wang G H. Some eco-physiological characteristics at R4-R5 stage in relation to soybean yield differing in maturities. Scientia Agricultura Sinica, 2004, 37(9): 1293-1300. |
金剑, 刘晓冰, 王光华. 不同熟期大豆R4-R5期冠层某些生理生态性状与产量的关系. 中国农业科学, 2004, 37(9): 1293-1300. | |
10 | Worku W. Performance, radiation capture and use by maize-mung bean-common bean sequential intercropping under different leaf removal and row orientation schemes. Experimental Agriculture, 2020, 56(5):752-766. |
11 | Zhang L, Werf W V D, Bastiaans L, et al. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research, 2008, 107(1): 29-42. |
12 | Awal M A, Koshi H, Ikeda T. Radiation interception and use by maize/peanut intercrop canopy. Agricultural and Forest Meteorology, 2006, 139(1/2): 74-83. |
13 | Gao Y, Duan A W, Qiu X Q, et al. Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Chinese Journal of Applied Ecology, 2010, 102(4): 952-958. |
14 | Yu H L, Fan R L. Research on the effect of sweet clover interplanting. Heilongjiang Agricultural Sciences, 1990(6): 14-16. |
于海林, 范瑞兰. 玉米草木樨间种效应研究. 黑龙江农业科学, 1990(6): 14-16. | |
15 | Yang F, Huang S, Gao R, et al. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: far-red ratio. Field Crops Research, 2014, 155: 245-253. |
16 | Cui L, Su B Y, Yang F, et al. Relationship between light interception and light utilization of soybean canopy in relay strip intercropping system. Scientia Agricultura Sinica, 2015, 48(1): 43-54. |
崔亮, 苏本营, 杨峰, 等. 带状套作大豆群体冠层光能截获与利用特征. 中国农业科学, 2015, 48(1): 43-54. | |
17 | Smith H. Phytochromes and light signal perception by plants-an emerging synthesis. Nature, 2000, 407: 585-591. |
18 | Wang Z K, Wu P T, Zhao X N, et al. A review of light interception and utilization by intercropped canopies. Journal Natural Resources, 2015, 30(6): 1057-1066. |
王自奎, 吴普特, 赵西宁, 等. 作物间套作群体光能截获和利用机理研究进展. 自然资源学报, 2015, 30(6): 1057-1066. | |
19 | Tsubo M, Walker S. A model of radiation interception and use by a maize-bean intercrop canopy. Agricultural and Forest Meteorology, 2002, 110(3): 203-215. |
20 | Liu X. Study of the light distribution, interception and use efficiency in maize-soybean strip intercropping system. Ya'an: Sichuan Agricultural University, 2016. |
刘鑫. 玉豆带状间作系统光能分布、截获与利用研究. 雅安:四川农业大学, 2016. | |
21 | Vandermeer J. The ecology of intercropping. New York: Cambridge University Press, 1989. |
22 | Hristopher B S. Introduction to mathematical modeling of crop growth. Baca Raton, FL, USA: Brown Walker Press, 2006. |
23 | Campbell G S, Norman J M. An introduction to environ- mental biophysics (2nd Edition). New York: Springer, 1998. |
24 | Tsubo M, Walker S, Mukhala E. Comparisons of radiation use efficiency of mono/inter-cropping systems with different row orientations. Field Crops Research, 2001, 71(1): 17-29. |
25 | Aphalo P J, Ballare C L, Scopel A. Plant-plant signaling, the shade-avoidance response and competition. Journal of Experimental, Botany, 1999, 50(340): 1629-1634. |
26 | Acreche M M, Briceno-Felix G, Martin Sanchez J A, et al. Radiation interception and use efficiency as affected by breeding in Mediterranean wheat. Field Crops Research, 2009, 110(2): 91-97. |
27 | Wang X. Longdong alfalfa Medicago sativa cultivation and management. Pratacultural Science, 2004, 21(8): 30-32. |
王鑫. 陇东紫花苜蓿的栽培与田间管理技术. 草业科学, 2004, 21(8): 30-32. | |
28 | Wang R, Dong B, Wu H H, et al. Mathematical simulation progress of greenhouse crop photosynthesis. Journal of Shenyang Agricultural University, 2013, 44(5): 518-523. |
王蕊, 董冰, 吴海涵, 等. 设施农业作物光合作用数学模拟研究. 沈阳农业大学学报, 2013, 44(5): 518-523. | |
29 | Wang C, Hu Z Y, Chen L Q, et al. Influence of planting densities on canopy structure and light radiation of sorghum. Crops, 2017(5): 119-123. |
王聪, 胡尊艳, 陈林祺, 等. 种植密度对高粱冠层结构及光辐射特征的影响. 作物杂志, 2017(5): 119-123. | |
30 | Gao Y. Productivity and resource use of nutrient, light and heart in the wheat and maize intercropping system. Xianyang: University of Chinese Academy of Sciences, CAS, EM, 2015. |
高莹. 小麦/玉米间作系统生产力与养分光热资源利用研究. 咸阳: 中国科学院大学, 2015. | |
31 | Gardner F P, Pearce R B, Mitchell R L. Physiology of crop plants. Iowa: Iowa State University Press, 1985. |
32 | Zhang G G, Yang Z B, Dong S T. Studies on forage potential and mechanism of maize and alfalfa intercropping system. Scientia Agricultura Sinica, 2011, 44(16): 3436-3445. |
张桂国, 杨在宾, 董树亭. 玉米+苜蓿间作系统饲料生产潜力及其机理的研究. 中国农业科学, 2011, 44(16): 3436-3445. | |
33 | Liu Z K, Cao W D, Qin W L, et al. A study on the pattern and effect of maize intercropping with alfalfa. Acta Prataculturae Sinica, 2009, 18(6): 158-163. |
刘忠宽, 曹卫东, 秦文利, 等. 玉米-紫花苜蓿间作模式与效应研究. 草业学报, 2009, 18(6): 158-163. | |
34 | Sun B, Peng Y, Yang H, et al. Alfalfa/maize intercropping provides a feasible way to improve yield and economic incomes in farming and pastoral areas of northeast China. PLoS One, 2014, 9(10): 1-12. |
35 | Shao Z Q, Zheng C C, Postma J A, et al. Nitrogen acquisition, fixation and transfer in alfalfa-maize intercrops are increased through root contact and morphological responses to interspecies competition. Journal of Integrative Agriculture, 2021, 20(8): 2240-2254. |
36 | Gao Y, Duan A W, Liu Z G, et al. Light environment characteristics in maize-soybean strip intercropping system. Chinese Journal of Applied Ecology, 2008, 19(6): 1248-1254. |
高阳, 段爱旺, 刘祖贵, 等. 玉米和大豆条带间作模式下的光环境特性. 应用生态学报, 2008, 19(6): 1248-1254. | |
37 | Yang X Q, Wang Y, Qi X N, et al. Photosynthetic physio-ecological characteristics of maize intercropping system. Soil and Crop, 2019, 8(1): 72-79. |
杨小琴, 王洋, 齐晓宁,等. 玉米间作体系的光合生理生态特征. 土壤与作物, 2019, 8(1): 72-79. | |
38 | Li M. Effect on complementary competition and wind erosion prevention in the maize and peanut intercropping system. Shenyang: Shenyang Agricultural University, 2012. |
李美. 玉米花生间作群体互补竞争及防风蚀效应研究. 沈阳: 沈阳农业大学, 2012. | |
39 | Liu X, Rahman T, Song C, et al. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Research, 2017, 200: 38-46. |
40 | Wang Z K, Wu P T, Zhao X N, et al. Simulation of instantaneous light transmission in wheat/maize intercropping canopy in Hetao region, China. Chinese Journal of Applied Ecology, 2015, 26(6): 1704-1710. |
王自奎, 吴普特, 赵西宁, 等. 河套地区小麦/玉米套作群体光能瞬时传输的数学模拟. 应用生态学报, 2015, 26(6): 1704-1710. |
[1] | 王保林,王晶杰,杨勇,常书娟,陈喜梅,刘爱军. 植被光合有效辐射吸收分量及最大光能利用率算法的改进[J]. 草业学报, 2013, 22(5): 220-228. |
[2] | 王磊,隆小华,郝连香,刘兆普. 氮素形态对盐胁迫下菊芋幼苗PSⅡ光化学效率及抗氧化特性的影响[J]. 草业学报, 2012, 21(1): 133-140. |
[3] | 付刚,沈振西,张宪洲,石培礼,何永涛,武建双,周宇庭 . 基于MODIS算法的藏北高寒草甸的光能利用效率模拟[J]. 草业学报, 2012, 21(1): 239-247. |
[4] | 李瑾,张德罡,张宏斌,李刚,杨桂霞,李林芝,辛晓平. 甸草原光合有效辐射分量变化规律分析[J]. 草业学报, 2010, 19(4): 243-250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||