草业学报 ›› 2010, Vol. 19 ›› Issue (6): 248-262.
马江涛1,2, 王宗礼1, 黄东光3, 吴燕民2*
收稿日期:
2010-04-02
出版日期:
2010-06-25
发布日期:
2010-12-20
作者简介:
马江涛(1984-),男,河北邢台人,在读硕士。E-mail:mjt2007@sina.com
基金资助:
MA Jiang-tao1,2, WANG Zong-li1, HUANG Dong-guang3, WU Yan-min2
Received:
2010-04-02
Online:
2010-06-25
Published:
2010-12-20
摘要: 随着生物科学的发展,基因工程已涉足植物、动物、微生物等研究领域。近年,由于环境的日趋恶化,极端气候频繁出现,社会对牧草抗逆新品种的需求日渐迫切,这也加速了基因工程在牧草培育中的应用与推广。本研究对过去20多年来基因工程在近30种主要牧草遗传转化、品质改良、抗病虫、抗除草剂、抗逆性、可饲用疫苗等方面的研究进展进行了全面总结和综述,分析了目前牧草基因工程研究中存在的问题,就发展前景进行了展望。
中图分类号:
马江涛, 王宗礼, 黄东光, 吴燕民. 基因工程在牧草培育中的应用[J]. 草业学报, 2010, 19(6): 248-262.
MA Jiang-tao, WANG Zong-li, HUANG Dong-guang, WU Yan-min. Application of genetic engineering in forage plants breeding[J]. Acta Prataculturae Sinica, 2010, 19(6): 248-262.
[1] 梁哲, 姜三杰, 吴燕民, 等. 三叶草基因工程研究进展[J]. 草业学报, 2009, 18(2): 205-211. [2] 张永彦, 徐子勤. 多年生黑麦草成熟胚再生体系的建立及基因枪转化[J]. China Biotechnology, 2005, 25(3): 53-59. [3] Ke H Q, Lee C W. Plant regeneration in Kentucky bluegrass (Poa pratensis L.) via coleoptile tissue cultures[J]. Plant Cell Reports, 1996, 15: 882-887. [4] Nielsen K A, Larsen E, Knudsen E. Regeneration of protoplast-derived green plants of Kentucky blue grass (Poa pratensis L.)[J]. Plant Cell Reports, 1993, 12: 537-540. [5] Valk P, Zaal M A C M, Creemers-Molenaar J. Somatic embryogenesis and plant regeneration in inflorescence and seed derived callus cultures of Poa pratensis L. (Kentucky bluegrass)[J]. Plant Cell Reports, 1989, 7: 644-647. [6] Abogadallah G M, Quick W P. Fast versatile regeneration of Trifolium alexandrinum L.[J]. Plant Cell Tissue and Organ Culture, 2010, 100: 39-48. [7] Li J J, Wu Y M, Wang T, et al. In vitro direct organogenesis and regeneration of Medicago sativa[J]. Biologia Plantarum, 2009, 53(2): 325-328. [8] Nagarajan P, McKenzie J S, Walton P D. Embryogenesis and plant regeneration of Medicago spp. in tissue culture[J]. Plant Cell Reports, 1986, 5: 77-80. [9] Burris J N, Mann D G J, Joyce B L, et al. An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass (Panicum virgatum L.)[J]. Bioenerg Research, 2009, 2: 267-274. [10] Li X L, Yu X M, Wang N N, et al. Genetic and epigenetic instabilities induced by tissue culture in wild barley (Hordeum brevisubulatum (Trin.) Link)[J]. Plant Cell Tissue and Organ Culture, 2007, 90: 153-168. [11] Liu G S, Liu J S, Qi D M, et al. Factors affecting plant regeneration from tissue cultures of Chinese leymus (Leymus chinensis)[J]. Plant Cell Tissue and Organ Culture, 2004, 76: 175-178. [12] Akashi R, Kawano T, Hashiguchi M, et al. Super roots in Lotus corniculatus: A unique tissue culture and regeneration system in a legume species[J]. Plant and Soil, 2003, 255: 27-33. [13] Molinari L, Busti A, Calderini O, et al. Plant regeneration from callus of apomictic and sexual lines of Paspalum simplex and RFLP analysis of regenerated plants[J]. Plant Cell Reports, 2003, 21: 1040-1046. [14] Wang Z, Lehmann D, Bell J, et al. Development of an efficient plant regeneration system for Russian wildrye (Psathyrostachys juncea)[J]. Plant Cell Reports, 2002, 20: 797-801. [15] Vikrant, Rashid A. Somatic embryogenesis from immature and mature embryos of a minormillet Paspalum scrobiculatum L.[J]. Plant Cell Tissue and Organ Culture, 2002, 69: 71-77. [16] Nayak P, Sen S K. Plant regeneration through somatic embryogenesis from suspension culture-derived protoplasts of Paspalum scrobiculatum L.[J]. Plant Cell Reports, 1991, 10: 362-365. [17] Zwierzykowski Z, Zwierzykowska E, Slusarkiewicz-Jarzina A, et al. Regeneration of anther-derived plants from pentaploid hybrids of Festuca arundinacea×Lolium multifiorum[J]. Euphytica, 1999, 105: 191-195. [18] McLean N L, Nowak J. Inheritance of somatic embryogenesis in red clover (Trifolium pratense L.)[J]. Theoretical and Applied Genetics, 1998, 97: 557-562. [19] MacLean N L, Nowak J. Plant regeneration from hypocotyl and petiole callus of Trifolium pratense L.[J]. Plant Cell Reports, 1989, 8: 395-398. [20] Beattie L D, Garrett R G. Adventitious shoot production from immature embryos of white clover[J]. Plant Cell Tissue and Organ Culture, 1995, 42: 67-72. [21] Marousky F J, West S H. Somatic embryogenesis and plant regeneration from cultured mature caryopses of bahiagrass (Paspalum notatum Flugge)[J]. Plant Cell Tissue and Organ Culture, 1990, 20: 125-129. [22] Heszky L E, Binh D Q, Kiss E, et al. Increase of green plant regeneration efficiency by callus selection in Puccinellia limosa (Schur.) Holmbg.[J]. Plant Cell Reports, 1989, 8: 174-177. [23] Choo T M. Plant regeneration in zigzag clover (Trifofium medium L.)[J]. Plant Cell Reports, 1988, 7: 246-248. [24] Horn M E, Conger B V, Harms C T. Plant regeneration from protoplasts of embryogenic suspension cultures of orchardgrass (Dactylis glomerata L.)[J]. Plant Celt Reports, 1988, 7: 371-374. [25] Dale P J, Thomas E, Brettell R I S, et al. Embryogenesis from cultured immature inflorescences and nodes of Lolium multiflorum[J]. Plant Cell Tissue and Organ Culture, 1981, 1: 47-55. [26] Bajaj Y P S, Sidhu B S, Dubey V K. Regeneration of genetically diverse plants from tissue cultures of forage grass-Panicum sps[J]. Euphytica, 1981, 30: 135-140. [27] Dalton S J, Thomas I D. A statistical comparison of various factors on embryogenic proliferation, morphogenesis and regeneration in Lolium temulentum cell suspension colonies[J]. Plant Cell Tissue and Organ Culture, 1992, 30: 15-29. [28] Valk P, Ruis F, Tettelaar-Schrier A M, et al. Optimizing plant regeneration from seed-derived callus cultures of Kentucky bluegrass: The effect of benzyladenine[J]. Plant Cell Tissue and Organ Culture, 1995, 40: 101-103. [29] 黄骏麒, 钱思颖, 刘桂玲, 等. 外源海岛棉DNA导致陆地棉性状的变异[J]. 遗传学报, 1981, 8(1): 56-62. [30] 张孔恬, 刘根齐, 孔繁瑞. 高粱恢复不育系基因的非配子融合转移及其后代表现[J]. 遗传学报, 1982, 9(3): 209-213. [31] Crossway A, Oakes J V, Irvine J M, et al. Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts[J]. Molecular and General Genetics, 1986, 202: 179-185. [32] 朱培冲, 王鸣歧, 陆妙康 等. 动态导入法获得的杂种青菜——甘蓝及其子代[J]. 上海农业学报, 1986, 2(3): 17-26. [33] 刘根齐, 张孔恬. 高粱不育系与保持系授粉过程中外源恢复基因的引入及其后代表现[J]. 作物学报, 1987, 13(2): 123-127. [34] Weber G, Monajembashi S, Greulich K O, et al. Microperforation of plant tissue with a UV Laser microbeam and injection of DNA into cells[J]. Naturwissenschaften, 1988, 75: 35-36. [35] 周光宇, 翁坚, 龚蓁蓁, 等. 农业分子育种授粉后外源DNA导入植物的技术[J]. 中国农业科技, 1988, 21(3): 1-6. [36] Topfer R, Gronenborn B, Schell J, et al. Uptake and transient expression of chimeric genes in seed-derived embryos[J]. The Plant Cell, 1989, 1(1): 133-139. [37] Kaeppler H F, Gu W N, Somers D A, et al. Silicon carbide fiber-mediated DNA delivery into plant cells[J]. Plant Cell Reports, 1990, 9: 415-418. [38] 张力建, 陈乐玫, 袁静, 等. 超声波法直接导入外源基因: 高效烟草转化系统的建立[J]. 中国农业科技, 1991, 24(2): 83-89. [39] Wang Z Y, Ge Y X. Recent advances in genetic transformation of forage and turf grasses[J]. In Vitro Cellular & Developmental Biology-Plant, 2006, 42: 1-18. [40] Klein T M, Wolf E D, Wu R, et al. High-velocity microprojectiles for delivering nucleic acids into living cells[J]. Nature, 1987, 327: 70-73. [41] Guo Y D, Hisano H, Shimamoto Y, et al. Transformation of androgenic-derived Festulolium plants (Lolium perenne L.×Festuca pratensis Huds.)by Agrobacterium tumefaciens[J]. Plant Cell Tiss and Organ Culture, 2009, 96: 219-227. [42] Gao C X, Liu J X, Nielsen K K. Agrobacterium-mediated transformation of meadow fescue (Festuca pratensis Huds.)[J]. Plant Cell Reports, 2009, 28: 1431-1437. [43] Gao C X, Long D F, Lenk I, et al. Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment[J]. Plant Cell Reports, 2008, 27: 1601-1609. [44] Wang Z Y, Scott M, Bell J, et al. Field performance of transgenic tall fescue (Festuca arundinacea Schreb.) plants and their progenies[J]. Theoretical and Applied Genetics, 2003, 107: 406-412. [45] Bettany A J E, Dalton S J, Timms E, et al. Agrobacterium tumefaciens-mediated transformation of Festuca arundinacea (Schreb.) and Lolium multiflorum (Lam.)[J]. Plant Cell Reports, 2003, 21: 437-444. [46] Cho M J, Ha C D, Lemaux P G. Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues[J]. Plant Cell Reports, 2000, 19: 1084-1089. [47] Weeks J T, Ye J S, Rommens C M. Development of an in planta method for transformation of alfalfa (Medicago sativa)[J]. Transgenic Research, 2008, 17: 587-597. [48] Samac D A. Strain specificity in transformation of alfalfa by Agrobacterium tumefaciens[J]. Plant Cell Tissue and Organ Culture, 1995, 43: 271-277. [49] Nakamura T, Ishikawa M. Transformation of suspension cultures of bromegrass (Bromus inermis) by Agrobacterium tumefaciens[J]. Plant Cell Tissue and Organ Culture, 2006, 84: 293-299. [50] Gao C X, Jiang L, Folling M, et al. Generation of large numbers of transgenic Kentucky bluegrass (Poa pratensis L.) plants following biolistic gene transfer[J]. Plant Cell Reports, 2006, 25: 19-25. [51] Quecini V M, Alves A C, Oliveira C A, et al. Microparticle bombardment of Stylosanthes guianensis: transformation parameters and expression of a methionine-rich 2S albumin gene[J]. Plant Cell Tissue Organ Culture, 2006, 87: 167-179. [52] Ge Y X, Norton T, Wang Z Y. Transgenic zoysiagrass (Zoysia japonica) plants obtained by Agrobacterium-mediated transformation[J]. Plant Cell Reports, 2006, 25: 792-798. [53] Toyama K, Bae C H, Kang J G, et al. Production of herbicide-tolerant zoysia grass by Agrobacterium-mediated transformation[J]. Molecular Cells, 2003, 16(1): 19-27. [54] Shu Q Y, Liu G S, Xu S X, et al. Genetic transformation of Leymus chinensis with the PAT gene through microprojectile bombardment to improve resistance to the herbicide Basta[J]. Plant Cell Reports, 2005, 24: 36-44. [55] Wang Z Y, Bell J, Lehmann D. Transgenic Russian wildrye (Psathyrostachys juncea) plants obtained by biolistic transformation of embryogenic suspension cells[J]. Plant Cell Reports, 2004, 22: 903-909. [56] Takahashi W, Fujimori M, Miura Y, et al. Increased resistance to crown rust disease in transgenic Italian ryegrass (Lolium multiflorum Lam.) expressing the rice chitinase gene[J]. Plant Cell Reports, 2005, 23: 811-818. [57] Petrovska N, Wu X L, Donato R, et al. Transgenic ryegrasses (Lolium spp.) with down-regulation of main pollen allergens[J]. Molecular Breeding, 2004, 14: 489-501. [58] Li Q, Robson P R H, Bettany A J E, et al. Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promoter[J]. Plant Cell Reports, 2004, 22: 816-821. [59] Ye X, Wang Z Y, Wu X, et al. Transgenic Italian ryegrass (Lolium multiflorum) plants from microprojectile bombardment of embryogenic suspension cells[J]. Plant Cell Reports, 1997, 16: 379-384. [60] Cho H J, Brotherton J E, Widholm J M. Use of the tobacco feedback-insensitive anthranilate synthase gene (ASA2) as a selectable marker for legume hairy root transformation[J]. Plant Cell Reports, 2004, 23: 104-113. [61] Nikolic′ R, Mitic′ N, Ninkovic′ S, et al. Efficient genetic transformation of Lotus corniculatus L. and growth of transformed plants in field[J]. Biologia Plantarum, 2003, 47(1): 137-140. [62] Smith R L, Grando M F, Li Y Y, et al. Transformation of bahiagrass (Paspalum notatum Flugge)[J]. Plant Cell Reports, 2002, 20: 1017-1021. [63] Richards H A, Rudas V A, Sun H, et al. Construction of a GFP-BAR plasmid and its use for switchgrass transformation[J]. Plant Cell Reports, 2001, 20: 48-54. [64] Bajaj S, Ran Y, Phillips J, et al. A high throughput Agrobacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.)[J]. Plant Cell Reports, 2006, 25: 651-659. [65] Wu Y Y, Chen Q J, Chen M, et al. Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+antiporter gene[J]. Plant Science, 2005, 169: 65-73. [66] Chen X, Yang W Q, Sivamani E, et al. Selective elimination of perennial ryegrass by activation of a pro-herbicide through engineering E. coli arg E gene[J]. Molecular Breeding, 2005, 15: 339-347. [67] Altpeter F, Xu J P, Ahmed S. Generation of large numbers of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage-and turf-type cultivars[J]. Molecular Breeding, 2000, 6: 519-528. [68] Maas H M, Jong E R, Rueb S, et al. Stable transformation and long-term expression of the gusA reporter gene in callus lines of perennial ryegrass (Lolium perenne L.)[J]. Plant Molecular Biology, 1994, 24: 401-405. [69] 何勇, 田志宏. 草坪植物遗传转化的研究进展[J]. 生物技术通讯, 2003, 14: 539-542. [70] Chen L F O, Hwang J Y, Charng Y Y, et al. Transformation of broccoli (Brassica oleracea var. italica) with isopentenyltransferase gene via Agrobacterium tumefaciens for post-harvest yellowing retardation[J]. Molecular Breeding, 2001, 7: 243-257. [71] Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin[J]. Science, 1995, 270:1986-1988. [72] Calderini O, Bovone T, Scotti C, et al. Delay of leaf senescence in Medicago sativa transformed with the ipt gene controlled by the senescence-specific promoter SAG12[J]. Plant Cell Reports, 2007, 26: 611-615. [73] Wang Z Y, Ye X D, Nagel J, et al. Expression of a sulphur-rich sunflower albumin gene in transgenic tall fescue (Festuca arundinacea Schreb.) plants[J]. Plant Cell Reports, 2001, 20: 213-219. [74] Avraham T, Badani H, Galili S, et al. Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionine γ-synthase gene[J]. Plant Biotechnology Journal, 2005, 3: 71-79. [75] Bagga S, Potenza C, Ross J, et al. A transgene for high methionine protein is posttranscriptionally regulated by methionine[J]. In Vitro Cellular and Developmental Biology-Plant, 2005, 41: 731-741. [76] 张改娜, 贾敬芬. 豌豆清蛋白 1(PA1)基因的克隆及对苜蓿的转化[J]. 草业学报, 2009, 18(3): 117-125. [77] Wandelt C I, Khan M R I, Craig S, et al. Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants[J]. The Plant Journal, 1992, 2(2): 181-192. [78] Morris P, Robbins M P. Manipulating condensed tannins in forage legumes[A]. In: McKersie B D, Brown D C W. Biotechnology and the Improvement of Forage Legumes[M]. Wallingford, CT: CAB International, 1997: 147-173. [79] Carron T R, Robbins M P, Morris P. Genetic modification of condensed tannin biosynthesis in Lotus corniculatus 1. Heterologous antisense dihydroflavonol reductase down-regulates tannin accumulation in “hairy root” cultures[J]. Theoretical and Applied Genetics, 1994, 87: 1006-1015. [80] Robbins M P, Bavage A D, Strudwicke C, et al. Genetic manipulation of condensed tannins in higher plants[J]. Plant Physiology, 1998, 116: 1133-1144. [81] Jongedijk E, Tigelaar H, Roekel J S C, et al. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants[J]. Euphytica, 1995, 85: 173-180. [82] Masoud S A, Zhu Q, Lamb C, et al. Constitutive expression of an inducible β-1,3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogen Phytophthora megasperma f. sp medicaginis, but does not reduce disease severity of chitin-containing fungi[J]. Transgenic Research, 1996, 5: 313-323. [83] Dong S J, Shew H D, Tredway L P, et al. Expression of the bacteriophage T4 lysozyme gene in tall fescue confers resistance to gray leaf spot and brown patch diseases[J]. Transgenic Research, 2008, 17: 47-57. [84] Kalla R, Ludlow E, Lepage C, et al. Development of clovers with immunity to white clover mosaic virus[A]. Abstracts 2nd International Symposium Molecular Breeding of Forage Crops[C]. Victoria: Lorne and Hamilton, 2000: 106. [85] 赵桂琴, 慕平. 苜蓿花叶病毒外壳蛋白基因对红三叶的遗传转化及转基因植株的抗病性分析[J]. 西北植物学报, 2004, 24(10): 1850-1855. [86] 赵桂琴, 慕平, Paul Chu. 苜蓿花叶病毒外壳蛋白基因在白三叶中的表达及转基因植株的抗病性分析[J]. 农业生物技术学报, 2005, 13(2): 230-234. [87] Strizhov N, Keller M, Mathur J, et al. A synthetic CryIC gene,encoding a bacillus thuringiensis δ-endotoxin, confers spodoptera resistance in alfalfa and tobacco[J]. Proceedings of the National Academy of Science of USA, 1996, 93: 15012-15017. [88] Voisey C R, Dudas B, Biggs R, et al. Transgenic pest and disease resistant white clover plants[A]. Spangenberg G. Molecular Breeding of Forage Crops[C]. Kluwer Academic Publishers, 2000, 11: 19-24. [89] Thomas J C, Wasmann C C, Echt C, et al. Introduction and expression of an insect proteinase inhibitor in alfalfa (Medicago sativa L.)[J]. Plant Cell Reports, 1994, 14: 31-36. [90] Li D X, Sun Q, Huang M, et al. Agrobacterium-mediated genetic transformation of Elymus breviaristatus with Pseudomonas pseudoalcaligenes insecticidal protein gene[J]. Plant Cell Tissue and Organ Culture, 2007, 89: 159-168. [91] Kuthleen D H, Willy J B, Greef D. Engineering of herbicide-resistant alfalfa and evaluation under field conditions[J].Crop Science, 1990, 30: 866-871. [92] Tranel P J, Wassom J J, Jeschke M R, et al. Transmission of herbicide resistance from a monoecious to a dioecious weedy Amaranthus species[J]. Theoretical and Applied Genetics, 2002, 105: 674-679. [93] Wang L J, Li X F, Chen S Y, et al. Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA3[J]. Biotechnology Letters, 2009, 31: 313-319. [94] Mckersie B D, Murnaghan J, Jones K S, et al. Iron-Superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance[J]. Plant Physiology, 2000, 122: 1427-1437. [95] Zhao J S, Ren W, Zhi D Y, et al. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress[J]. Plant Cell Reports, 2007, 26: 1521-1528. [96] Jin T C, Chang Q, Li W F, et al. Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa[J]. Plant Cell Tissue and Organ Culture, 2010, 100: 219-227. [97] Wigdorovitz A, Carrillo C, Dus Santos M J, et al. Induction of a protective antibody response to foot and mouth disease virus in mice following oral or parenteral immunization with alfalfa transgenic plants expressing the viral structural protein VP1[J]. Virology, 1999, 255: 347-353. [98] 王伟青, 周珍辉, 曹授俊, 等. 植物基因工程疫苗在畜牧业上的应用与发展前景[J]. 畜牧与兽医, 2009, 41(5): 92-94. [99] Dus Santos M J, Wigdorovitz A, Trono K, et al. A novel methodology to develop a foot and mouth disease virus (FMDV) peptide-based vaccine in transgenic plants[J]. Vaccine, 2002, 20: 1141-1147. [100] Ziauddin A, Lee R W H, Lo R, et al. Transformation of alfalfa with a bacterial fusion gene, Mannheimia haemolytica A1 leukotoxin50-gfp: Response with Agrobacterium tumefaciens strains LBA4404 and C58[J]. Plant Cell Tissue and Organ Culture, 2004, 79: 271-278. [101] 张占路, 唐益雄, 吴燕民, 等. 百脉根表达 H5N1 亚型禽流感血凝素的研究[J]. 中国农业科学, 2008, 41(1): 303-307. [102] 王宝琴, 王小龙, 张永光, 等. FMDV vp1基因在豆科牧草百脉根中的转化与表达[J]. 中国病毒学, 2005, 20(5): 526-529. [103] 王炜, 张永光, 潘丽, 等. 口蹄疫病毒 P12A-3C免疫原基因在百脉根中的遗传转化与表达[J]. 中国人兽共患病学报, 2007, 23(3): 236-247. [104] 贺红霞, 林春晶, 王铭, 等. 乙肝表面抗原基因表达载体的构建及对百脉根的转化[J]. 农业生物技术学报, 2007, 15(1): 115-118. [105] 唐广立, 李传山, 陈明利, 等. 百脉根高频再生体系的建立及兔出血症病毒衣壳蛋白VP60基因的转化[J]. 分子植物育种, 2007, 5(4): 593-600. [106] 黎万奎, 陈幼竹, 周宇, 等. 肝片吸虫抗原基因转基因苜蓿再生的研究[J]. 四川大学学报(自然科学版), 2003, 40(1): 144-147. [107] 毛雅妮, 孙娟, 张德罡, 等. 苜蓿组织培养研究进展[J]. 草业科学, 2009, 26(9): 146-155. [108] Hilder V A, Barker R F, Samour R A, et al. Protein and cDNA sequences of Bowman-Birk protease inhibitors from the cowpea (Vigna unguiculata Walp.)[J]. Plant Molecular Biology, 1989, 13: 701-710. [109] Cervera M, Pina J A, Juárez J, et al. A broad exploration of a transgenic population of citrus: Stability of gene expression and phenotype[J]. Theoretical and Applied Genetics, 2000, 100: 670-677. [110] 唐燕琼, 胡新文, 郭建春, 等. 柱花草种质遗传多样性的 ISSR分析[J]. 草业学报, 2009, 18(1): 57-64. [111] 季杨, 张新全, 马啸, 等. 多花黑麦草品种(系)间杂交及其杂种后代 SRAP遗传分析[J]. 草业学报, 2009, 18(4): 260-265. |
[1] | 张旸,郭海俊,刘龙飚,王卅,梁颖,聂玉哲,李玉花. 星星草PtGAPDH基因的克隆与表达分析[J]. 草业学报, 2014, 23(2): 207-214. |
[2] | 贾学静,董立花,丁春邦,李旭,袁明. 干旱胁迫对金心吊兰叶片活性氧及其清除系统的影响[J]. 草业学报, 2013, 22(5): 248-255. |
[3] | 杨小菊,赵昕,石勇,李新荣 . 盐胁迫对砂蓝刺头不同器官中离子分布的影响[J]. 草业学报, 2013, 22(4): 116-122. |
[4] | 刘金海,王鹤桦,左应梅,黄必志,畅宁,刘国道,周超. 臂形草14品种在滇南的适应性及其评价[J]. 草业学报, 2013, 22(3): 60-. |
[5] | 任爱琴,易津,高洪文,李俊,王学敏. 柠条锦鸡儿CkNCED1基因启动子的克隆及表达分析[J]. 草业学报, 2013, 22(2): 165-170. |
[6] | 李鸿雁,李志勇,师文贵,蔡丽艳,刘磊 . 内蒙古扁蓿豆叶片解剖性状与抗旱性的研究[J]. 草业学报, 2012, 21(3): 138-146. |
[7] | 曾亮,李敏权,杨晓明. 豌豆属种质资源遗传多样性的ISSR分析[J]. 草业学报, 2012, 21(3): 125-131. |
[8] | 董利苹,李先婷,曹靖,苏怡兵,代立兰,初金鹏. 四种耐盐牧草根际盐分动态分布特征[J]. 草业学报, 2011, 20(6): 68-76. |
[9] | 王小利,刘晓霞,王舒颖,杨义成,吴佳海. 高羊茅腺苷甲硫氨酸脱羧酶基因FaSAMDC的克隆与差异表达分析[J]. 草业学报, 2011, 20(4): 169-179. |
[10] | 刘晓军,洪光宇,袁志诚,文俊,罗勇,洪儒,杨烈. 干热胁迫下两种苇状羊茅对不同水肥处理的响应机理[J]. 草业学报, 2011, 20(1): 46-54. |
[11] | 王舟,刘建秀. DREB/CBF类转录因子研究进展及其在草坪草和牧草抗逆基因工程中的应用[J]. 草业学报, 2011, 20(1): 222-236. |
[12] | 刘建宁,石永红,王运琦,郭锐,吴欣明,郭璞,张燕,高新中. 高丹草生长动态及收割期的研究[J]. 草业学报, 2011, 20(1): 31-37. |
[13] | 郭颖,韩蕊莲,梁宗锁. 土壤干旱对黄土高原4个乡土禾草生长及水分利用特性的影响[J]. 草业学报, 2010, 19(2): 21-30. |
[14] | 唐凤兰 ,刘丽,陈积山,张月学,韩微波,刘杰淋,刘风岐. 不同诱变处理对苦荬菜M1代农艺性状和品质影响的初报[J]. 草业学报, 2010, 19(2): 248-252. |
[15] | 王玉华*,郝建国,贾敬芬*. 菊苣质体同源片段的克隆及非抗生素标记的质体定点整合表达载体构建[J]. 草业学报, 2009, 18(6): 72-81. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||