郑轶琦, 刘建秀. 草坪草分子遗传图谱的构建与应用研究进展. 草业学报, 2009, 18(1): 155-162. 刘艳香, 董宽虎. 转录因子CBF及其抗寒作用机制. 草业科学, 2009, 25(5): 86-94. Thomashow M F. So what’s new in the field of plant cold acclimation? Lots. Plant Physiology, 2001, 125: 89-93. Agarwal P K, Agarwal P, Reddy M K, et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 2006, 25: 1263-1274. 郭海林, 高雅丹, 薛丹丹, 等. 结缕草属植物抗寒性的遗传分析. 草业学报, 2009, 18(3): 53-58. Yang T W, Zhang L J, Zhang T G, et al. Transcriptional regulation network of cold-responsive genes in higher plants. Plant Science, 2005, 169: 987-995. Okamuro J K, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 1997, 94: 7076-7081. Jaglo K R, Kleff S, Amundsen K L, et al. Components of the Arabidopsis C-repeat/Dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiology, 2001, 127: 910-917. Goff S A, Cone K C, Chandler V L. Functional analysis of the transcriptional activator encoded by the maize B gene: Evidence for a direct functional interaction between two classes of regulatory proteins. Genes & Development, 1992, 6: 864-875. Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002, 290: 998-1009. Riechmann J L, Meyerowitz E M. The AP2/EREBP family of plant transcription factors. Biological Chemistry, 1998, 379: 633-646. Chattopadhyay S, Ang L H, Puente P, et al. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell, 1998, 10: 673-684. Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Research, 1999, 27: 470-478. Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110. Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994, 6: 251-264. Baker S S, Wilhelm K S, Thomashow M F. The 5’-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Molecular Biology, 1994, 24: 701-713. Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Molecular Biology, 1996, 30: 679-684. Iwasaki T, Kiyosue T, Yamaguchi-Shinozaki K, et al. The dehydration-inducibie rd17 (cor47) gene and its promoter region in Arabidopsis thaliana. Plant Physiology, 1997, 115: 1287. Ouellet F, Vazquez-Tello A, Sarhan F. The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Letters, 1998, 423: 324-328. Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences of the USA, 1997, 94: 1035-1040. Wang H, Datla R, Georges F, et al. Promoters from kin1 and cor6.6, two homologous Arabidopsis thaliana genes: Transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration. Plant Molecular Biology, 1995, 28: 605-617. Gilmour S J, Zarka D G, Stockinger E J, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant Journal, 1998, 16: 433-442. Medina J, Bargues M, Terol J, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiology, 1999, 119: 463-470. Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391-1406. Shinwari Z K, Nakashima K, Miura S, et al. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochemical and Biophysical Research Communications, 1998, 250: 161-170. Thomashow M F, Gilmour S J, Stockinger E J, et al. Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiologia Plantarum, 2001, 112: 171-175. Haake V, Cook D, Riechmann J L, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiology, 2002, 130: 639-648. 张晗, 信月芝, 郭惠明, 等. CBF转录因子及其在植物抗冷反应中的作用. 核农学报, 2006, 20(5): 406-409. Skinner J S, von Zitzewitz J, Szucs P. Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Molecular Biology, 2005, 59: 533-551. Badawi M, Danyluk J, Boucho B, et al. The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Molecular Genetics and Genomics, 2007, 277: 533-554. Park J M, Park C J, Lee S B, et al. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell, 2001, 13: 1035-1046. Choi D W, Rodriguez E M, Close T J. Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiology, 2002, 129: 1781-1787. Dubouzet J G, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant Journal, 2003, 33: 751-763. Shen Y G, Zhang W K, He S J, et al. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theoretical and Applied Genetics, 2003, 106: 923-930. Shen Y G, Zhang W K, Yan D Q, et al. Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theoretical and Applied Genetics, 2003, 107: 155-161. Hong J P, Kim W T. Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv Pukang). Planta, 2005, 220: 875-888. Kume S, Kobayashi F, Ishibashi M, et al. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes and Genetic Systems, 2005, 80: 185-197. Li X P, Tian A G, Luo G Z, et al. Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theoretical and Applied Genetics, 2005, 110: 1355-1362. Tang M J, Lü S Y, Jing Y X, et al. Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea. Plant Physiology and Biochemistry, 2005, 43: 233-239. Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 2003, 17: 1043-1054. Chinnusamy V, Zhu J, Zhu J K. Gene regulation during cold acclimation in plants. Physiologia Plantarum, 2006, 126: 52-61. Ishitani M, Xiong L M, Lee H, et al. HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell, 1998, 10: 1151-1162. Lee H, Xiong L M, Gong Z Z, et al. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes & Development, 2001, 15: 912-924. Novillo F, Alonso J M, Ecker J R, et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 2004, 101: 3985-3990. Sakuma Y, Maruyama K, Osakabe Y, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006, 18: 1292-1309. Qin F, Sakuma Y, Li J, et al. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant and Cell Physiology, 2004, 45: 1042-1052. Xue G P, Loveridge C W. HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant Journal, 2004, 37: 326-339. Xiong L Z, Yang Y N. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 2003, 15: 745-759. Jaglo-Ottosen K R, Gilmour S J, Zarka D G, et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280: 104-106. Gilmour S J, Sebolt A M, Salazar M P, et al. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiology, 2000, 124: 1854-1865. Gilmour S J, Fowler S G, Thomashow M F. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Molecular Biology, 2004, 54: 767-781. Hsieh T S, Lee J T, Yang P T, et al. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiology, 2002, 129: 1086-1094. Kasuga M, Miura S, Shinozaki K, et al. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant and Cell Physiology, 2004, 45: 346-350. Savitch L V, Allard G, Seki M, et al. The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant and Cell Physiology, 2005, 46: 1525-1539. Seki M, Narusaka M, Abe H, et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 2001, 13: 61-72. Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002, 14: 1675-1690. Maruyama K, Sakuma Y, Kasuga M, et al. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant Journal, 2004, 38: 982-993. 阳文龙, 刘敬梅, 刘强, 等. 高羊茅DREB类转录因子基因的分离及鉴定分析. 核农学报, 2006, 20(3): 187-192. 谢永丽, 王自章, 刘强, 等. 草坪草狗牙根中抗逆基因BeDREB的克隆及功能鉴定. 中国生物化学与分子生物学报, 2005, 21(4): 521-527. 胡晓艳. 野牛草的有性繁殖特性研究及其抗旱转录因子DREB的克隆. 杨凌: 西北农林科技大学, 2007. 任清. 早熟禾中DREB基因的克隆及特性分析. 北京: 中国农业科学院, 2005. Xiong Y W, Fei S Z. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta, 2006, 224: 878-888. Zhao H, Bughrara S S. Isolation and characterization of cold-regulated transcriptional activator LpCBF3 gene from perennial ryegrass (Lolium perenne L.). Molecular Genetics and Genomics, 2008, 279: 585-594. Tamura K, Yamada T. A perennial ryegrass CBF gene cluster is located in a region predicted by conserved synteny between Poaceae species. Theoretical and Applied Genetics, 2007, 114: 273-283. 王呈玉. 短芒大麦抗逆性相关基因DREB1和CDPK的克隆与特性分析. 吉林: 吉林大学, 2007. Brutigam M, Lindlf A, Zakhrabekova S, et al. Generation and analysis of 9792 EST sequences from cold acclimated oat, Avena sativa. BMC Plant Biology, 2005, 5:18. Agarwal P, Agarwal P K, Nair S, et al. Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Molecular Genetics and Genomics, 2007, 277: 189-198. 牛一丁. 苜蓿DREB类转录因子基因的研究. 呼和浩特: 内蒙古大学, 2008. 张飞. 霸王、沙冬青、小叶锦鸡儿CBF/DREB1转录因子cDNA全长的克隆及生物信息学分析. 呼和浩特: 内蒙古农业大学, 2009. 班巧英. 二色补血草LbDREB基因的克隆及功能分析. 黑龙江: 东北林业大学, 2009. 吴关庭, 陈锦清, 胡张华, 等. 根癌农杆菌介导转化获得耐逆性增强的高羊茅转基因植株. 中国农业科学, 2005, 38(12): 2395-2402. 梁蕊芳. 利用基因枪轰击法将NHX1、CBF耐逆相关基因导入高羊茅(Festuca arundinacea Schreb.). 呼和浩特: 内蒙古农业大学, 2005. 李志亮. 高羊茅抗渗透胁迫基因工程改良的研究. 石家庄: 河北师范大学, 2004. 王维飞. 高羊茅(Festuca arundinacea Schreb.)转DREB1A基因的研究. 北京: 北京林业大学, 2007. Zhao J S, Ren W, Zhi D Y. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Reports, 2007, 26: 1521-1528. 张振霞. 几种牧草和草坪草植物遗传转化体系的建立及其转基因研究. 兰州: 甘肃农业大学, 2002. 杨凤萍, 梁荣奇, 张立全, 等. 抗逆调节转录因子CBF1基因提高多年生黑麦草的抗旱能力. 华北农学报, 2006, 21(1): 14-18. 马欣荣. 根癌农杆菌(Agrobacterium tumefaciens)介导的多年生黑麦草(Lolium perenne L)遗传转化. 成都: 四川大学, 2006. 李雪. 多年生黑麦草基因转化与抗旱性遗传改良研究. 北京: 北京林业大学, 2008. 杨凤萍, 梁荣奇, 张立全, 等. 抗逆调节转录因子DREB1B基因转化多年生黑麦草的研究. 西北植物学报, 2006, 26(7): 1309-1315. 李子东, 赵翠珠, 周玲君, 等. 农杆菌介导的DREB1A基因转化多花黑麦草及其转化体系的优化. 山东大学学报(理学版), 2008, 43(9): 11-17. 王凭青, 李志中, 晁跃辉, 等. 拟南芥转录因子CBF1基因杂交狼尾草的转化. 重庆大学学报(自然科学版), 2007, 30(10): 134-137. 王渭霞, 朱廷恒, 胡张华, 等. 农杆菌介导的CBF1基因对松南结缕草的遗传转化. 园艺学报, 2005, 32(5): 953. 贺杰. 结缕草组织培养再生体系建立及转基因研究. 儋州: 华南热带农业大学, 2005. 齐春辉, 韩烈保, 梁小红, 等. 以基因枪法转化日本结缕草获得转基因植株. 北京林业大学学报, 2006, 28(3): 71-75. Li R F, Wei J H, Wang H Z, et al. Development of highly regenerable callus lines and Agrobacterium-mediated transformation of Chinese lawngrass (Zoysia sinica Hance) with a cold inducible transcription factor, CBF1. Plant Cell, Tissue and Organ Culture, 2006, 85: 297-305. 王渭霞, 朱廷恒, 玄松南. 农杆菌介导的匍匐翦股颖胚性愈伤组织的转化和转CBF1基因植株的获得. 中国草地学报, 2006, 28(4): 59-64. 罗莉. 草地早熟禾再生体系的建立及其遗传转化的研究. 北京: 北京林业大学, 2005. 信金娜, 韩烈保, 刘君, 等. 基因枪转化法获得草地早熟禾(Poa pratensis L.)转基因植株. 中国生物工程杂志, 2006, 26(8): 10-14. 韩烈保, 信金娜, 刘君, 等. 影响草地早熟禾(Poa pratensis L.)基因枪转化的关键因素研究. 中国生物工程杂志, 2006, 26(8): 1-4. James V A, Neibaur I, Altpeter F. Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Research, 2008, 17: 93-104. 李继平. 利用转基因技术改良紫花苜蓿抗寒性的初步研究. 北京: 中国农业科学院, 2009. 常青. 转录因子DREB1基因的克隆及其在大豆、苜蓿中的表达. 吉林: 东北师范大学, 2007. 霍朝霞. 拟南芥DREB1A基因转化紫花苜蓿的研究. 呼和浩特: 内蒙古大学, 2008. 王涌鑫. 根癌农杆菌介导的DREB1C基因转化苜蓿的研究. 北京: 中国农业科学院, 2008. 刘博. 农杆菌介导bdDREB2基因转化紫花苜蓿的研究. 重庆: 重庆大学, 2008. 刘艳芝, 韦正乙, 邢少辰, 等. 逆境相关转录因子DREB2A转化紫花苜蓿的研究. 吉林农业科学, 2007, 32(6): 27-29. 盛慧, 朱延明, 李杰, 等. DREB2A基因对苜蓿遗传转化的研究. 草业科学, 2007, 24(3): 40-45. 郭喜英. 百脉根中脱氧葡萄糖筛选表达载体的构建和转录因子CBF1的转化研究. 吉林: 东北师范大学, 2007. 钟克亚. 抗寒相关基因AtGoLS3、CBF3转化柱花草和拟南芥. 儋州: 华南热带农业大学, 2006. 李啸浪. 耐寒相关基因ω3、CBF3、AtGoLS3的分离克隆及ω3转化拟南芥和柱花草. 儋州: 华南热带农业大学, 2005. 王桂花, 米福贵, 刘娟, 等. 共转化CBF4和bar基因蒙农杂种冰草植株的分子检测. 内蒙古大学学报(自然科学版), 2008, 39(1): 61-65. 徐春波. 利用基因工程技术改良冰草抗旱性的初步研究. 呼和浩特: 内蒙古农业大学, 2005. 韦善君. 结缕草抗寒性及转录因子CBF1的转化研究. 武汉: 华中科技大学, 2006. 梁哲, 姜三杰, 未丽, 等. 三叶草基因工程研究进展. 草业学报, 2009, 18(2): 205-211. |