Reference:[1]Jones D L. Organic acids in the rhizosphere a critical review[J]. Plant and Soil, 1998, 205: 25-44.[2]Shen A L, Li X, Kanamori T, et al. Low molecular weight organic acids in two Japanese soils incubated with plant residues under different moisture conditions: I. Aliphatic acids[J]. Pedosphere, 1997, 7(1): 79-86.[3]Strobel B W. Influence of vegetation on low-molecular weight carboxylic acids in soil solution A review[J].Geoderma, 2001, 99: 169-198.[4]Yan X L. Root biology principles and applications[M]. Beijing: Science Press, 2007: 115-142.[5]Gardner W K, Parbery D G, Barber D A. The acquisition of phosphorus by Lupinus albusL. I. Some characteristics of the soil/root interface[J]. Plant and Soil, 1982, 68(1): 19-32.[6]Gardner W K, Parbery D G, Barber D A. The acquisition of phosphorus by Lupinus albusL. II. The effect of varying phosphorus supply and soil type on some characteristics of the soil/root interface[J]. Plant and Soil, 1982, 68(1): 33-41.[7]Gardner W K, Barber D A, Parbery D G. The acquisition of phosphorus by Lupinus albusL. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced[J]. Plant and Soil, 1983, 70(1): 107-124.[8]Gu J T, Li J C, Han S F, et al. Effect of ectopic expression of Lupinus albus APase gene on phosphorus uptake in Trifolium repens[J]. Acta Prataculturae Sinica, 2007, 16(4): 69-75.[9]Ae N, Arihara J, Okada K, et al. Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent[J]. Science, 1990, 248(49-54): 477-480.[10]Subbarao G V, Ae N, Otani T. Genetic variation in acquisition and utilization of phosphorus from iron-bound phosphorus in pigeon pea[J]. Soil Science and Plant Nutrition, 1997, 43(3): 511-519.[11]Gahoonia T S, Asmar F, Giese H, et al. Root released organic acids and phosphorus uptake of two barley cultivars in laboratory and field experiments[J]. European Journal of Agronomy, 2000, 12(3/4): 281-289.[12]Shen H, Yan X L, Zhao M, et al. Exudation of organic acids in common bean as related to mobilization of aluminum and iron-bound phosphates[J]. Environmental and Experimental Botany, 2002, 48(1): 1-9.[13]Zhao M, Shen H, Yan X L. mobilization and uptake of insoluble phosphorus by different common bean genotyes[J]. Plant Nutrition and Fertilizer Science, 2002, 8(4): 435-440.[14]Johnson S E, Loeppert R H. Role of organic acids in phosphate mobilization from iron oside[J]. Soil Science Society of America Journal, 2006, 70: 222-234. [15]Onthong J, Osaki M, Nilnood C, et al. Phosphorus status of some highly weathered soils in peninsulr Thailand and availability in relation to citrate and oxalate application[J]. Soil Science and Plant Nutrition, 1999, 45: 627-637.[16]Shi S L, Cao Z Z, Liu J R. Study on the phosphate solubilization and plant auxin secretion of Madicago sativa Rhizobium[J]. Acta Prataculturae Sinica, 2007, 16(2): 105-111.[17]Lan Z M, Lin X J, Zhang W G, et al. Effect of P deficiency on the emergence of Astragalus L. root exudates and mobilization of sparingly soluble Phosphorus[J].Scientia Agricultura Sinica, 2012,45(8): 1521-11531.[18]Lan Z M, Zhang H, Wu Y Q, et al. Effects of different genotypes ofAstragalus sinicus on uptake and utilization of sparingly soluble phosphorus[J]. Ecology and Environment, 2011, 20(10): 1454-1460.〖ZK)参考文献:[1]Jones D L. Organic acids in the rhizosphere-a critical review[J]. Plant and Soil, 1998, 205: 25-44.[2]Shen A L, Li X, Kanamori T, et al. Low-molecular-weight organic acids in two Japanese soils incubated with plant residues under different moisture conditions: I. Aliphatic acids[J]. Pedosphere, 1997, 7(1): 79-86.[3]Strobel B W. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-A review[J].Geoderma, 2001, 99: 169-198.[4]严小龙. 根系生物学原理与应用[M]. 北京: 科学出版社, 2007: 115-142.[5]Gardner W K, Parbery D G, Barber D A. The acquisition of phosphorus by Lupinus albusL. I. Some characteristics of the soil/root interface[J]. Plant and Soil, 1982, 68(1): 19-32.[6]Gardner W K, Parbery D G, Barber D A. The acquisition of phosphorus by Lupinus albusL. II. The effect of varying phosphorus supply and soil type on some characteristics of the soil/root interface[J]. Plant and Soil, 1982, 68(1): 33-41.[7]Gardner W K, Barber D A, Parbery D G. The acquisition of phosphorus by Lupinus albusL. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced[J]. Plant and Soil, 1983, 70(1): 107-124.[8]谷俊涛, 李金才, 韩胜芳, 等.异源表达白羽扇豆酸性磷酸酶基因对白三叶草磷吸收的影响[J]. 草业学报, 2007, 16(4): 69-75.[9]Ae N, Arihara J, Okada K, et al. Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent[J]. Science, 1990, 248(49-54): 477-480.[10]Subbarao G V, Ae N, Otani T. Genetic variation in acquisition and utilization of phosphorus from iron-bound phosphorus in pigeon pea[J]. Soil Science and Plant Nutrition, 1997, 43(3): 511-519.[11]Gahoonia T S, Asmar F, Giese H, et al. Root-released organic acids and phosphorus uptake of two barley cultivars in laboratory and field experiments[J]. European Journal of Agronomy, 2000, 12(3/4): 281-289.[12]Shen H, Yan X L, Zhao M, et al. Exudation of organic acids in common bean as related to mobilization of aluminum- and iron-bound phosphates[J]. Environmental and Experimental Botany, 2002, 48(1): 1-9.[13]赵明, 沈宏, 严小龙. 不同菜豆基因型根系对难溶性磷的活化吸收[J]. 植物营养与肥料学报, 2002, 8(4): 435-440.[14]Johnson S E, Loeppert R H. Role of organic acids in phosphate mobilization from iron oside[J]. Soil Science Society of America Journal, 2006, 70: 222-234. [15]Onthong J, Osaki M, Nilnood C, et al. Phosphorus status of some highly weathered soils in peninsulr Thailand and availability in relation to citrate and oxalate application[J]. Soil Science and Plant Nutrition, 1999, 45: 627-637.[16]师尚礼, 曹致中, 刘建荣. 苜蓿根瘤菌溶磷和分泌植物生长素能力研究[J].草业学报, 2007, 16(2): 105-111.[17]兰忠明, 林新坚, 张伟光, 等.缺磷对紫云英根系分泌物产生及对难溶性磷活化的影响[J].中国农业科学, 2012,45(8): 1521-11531.[18]兰忠明, 张辉, 吴一群, 等.不同紫云英基因型对难溶性磷吸收利用的影响[J].生态环境学报, 2011, 20(10): 1454-1460. |