[1] Loreau M, Naeem S, Inchausti P, et al . Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 2001, 294: 804-808. [2] Hooper D U, Chapin F S III, Ewel J J, et al . Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 2005, 75(1): 3-35. [3] Naeem S. Ecosystem consequences of biodiversity loss: The evolution of a paradigm. Ecology, 2002, 83(6): 1537-1552. [4] Tilman D, Reich P B, Knops J, et al . Diversity and productivity in a long-term grassland experiment. Science, 2001, 294: 843-845. [5] Zuo X A, Zhao X Y, Zhao H L, et al . Changes of species diversity and productivity in relation to soil properties in sandy grassland in Horqin sand land. Environmental Science, 2007, 28(5): 945-951. [6] Wilson J B, Lee W G, Mark A F. Species diversity in relation to ultramafic substrate and to altitude in southwestern New Zealand. Vegetatio, 1990, 86: 15-20. [7] Zhang Q, Hou X Y, Li F Y H, et al . Alpha, beta and gamma diversity differ in response to precipitation in the Inner Mongolia Grassland. PLoS ONE, 9(3): e93518. doi:10.1371/journal.pone.0093518. [8] Bai Y F, Li L H, Wang Q B, et al . Changes in plant species diversity and productivity along gradients of precipitation and elevation in the Xilin River Basin, Inner Mongolia. Acta Phytoecologica Sinica, 2000, 24(6): 667-673. [9] Zhang Z Z, Wu G L, Wang D, et al . Plant community structure and soil moisture in the semi-arid natural grassland of the Loess Plateau. Acta Prataculturae Sinica, 2014, 23(6): 313-319. [10] Abramsky Z, Rosenzweig M L. Tilman’s predicted productivity-diversity relationship shown by desert rodents. Nature, 1984, 309: 150-151. [11] Long W X, Yang X B, Li D H. Patterns of species diversity and soil nutrients along a chronosequence of vegetation recovery in Hainan Island, South China. Ecological Research, 2012, 27(3): 561-568. [12] Perroni-Ventura Y, Montana C, Garcia-Oliva F. Relationship between soil nutrient availability and plant species richness in a tropical semi-arid environment. Journal of Vegetation Science, 2006, 17(6): 719-728. [13] An S Q, Wang Z F, Zhu X L, et al . Effect of soil factors on species diversity in secondary forest communities. Journal of Wuhan Botanical Research, 1997, 15(2): 143-150. [14] Firn J, Erskine P D, Lamb D. Woody species diversity influences productivity and soil nutrient availability in tropical plantations. Oecologia, 2007, 154(3): 521-533. [15] Kahmen A, Perner J, Audorff V, et al . Effects of plant diversity, community composition and environmental parameters on productivity in montane european grasslands. Oecologia, 2005, 142(4): 606-615. [16] Ceulemans T, Stevens C J, Duchateau L, et al . Soil phosphorus constrains biodiversity across european grasslands. Global Change Biology, 2014, 20(12): 3814-3822. [17] Liu M X, Wang G. Responses of plant community diversity and soil factors to slope in alpine meadow. Chinese Journal of Ecology, 2013, 32(2): 259-265. [18] Wang C T, Long R J, Cao G M, et al . The relationship between soil nutrients and diversity-productivity of different type grasslands in alpine meadow. Chinese Journal of Soil Science, 2008, 39(1): 1-8. [19] Inner Mongolia-Ningxia jiont inspection group of Chinese Academy of Sciences. Vegetation of Inner Mongolia[M]. Beijing: Science Press, 1985. [20] Zhang Q, Niu J M, Buyantuyev A, et al . Ecological analysis and classification of Stipa breviflora communities in the Inner Mongolia region: the role of environmental factors. Acta Prataculturae Sinica, 2012, 21(1): 83-92. [21] Yang X D, Sun W G, Baoyin T. Characteristics of soil stoichiometry of Stipa klemezii community in desert steppe of Inner Mongolia. Chinese Journal of Grassland, 2012, 34(5): 30-34. [22] Ma W J, Zhang Q, Niu J M, et al . Relationship of ecosystem primary productivity to species diversity and functional group diversity: evidence from Stipa breviflora grassland in Nei Mongol. Chinese Journal of Plant Ecology, 2013, 37(7): 620-630. [23] Wei Z J, Han G D, Zhao G, et al . Research on Desert Grassland Ecosystem in China[M]. Beijing: Science Press, 2013. [24] Zhang G L, Gong Z T. Soil Survey Laboratory Methods[M]. Beijing: Science Press, 2012. [25] Trabucco A, Zomer R J, Bossio D A, et al . Climate change mitigation through afforestation/reforestation: A global analysis of hydrologic impacts with four case studies. Agriculture, Ecosystems and Environment, 2008, 126: 81-97. [26] Middleton N J, Thomas D. World Atlas of Desertification[M]. London: Arnold, United Nations Environment Programme, 1997. [27] Han B, Fan J W, Zhong H P. Grassland and biomass of communities along gradients of the Inner Mongolia grassland transect. Journal of Plant Ecology, 2006, 30(4): 553-562. [28] Kang M, Dai C, Ji W, et al . Biomass and its allocation in relation to temperature, precipitation, and soil nutrients in Inner Mongolia Grasslands, China. PLoS ONE, 8(7): e69561. Doi: doi:10.1371/journal.pone.0069561. [29] Daubenmire R. Steppe vegetation of Washington. Washington Agricultural Experiment Station Technical Bulletin, 1970, 62:1-131. [30] Sarmiento G. Patterns of specific and phenological diversity in the grass community of the venezuelan tropical savannas. Journal of Biogeography, 1983, 10: 373-391. [31] Jobbagy E G, Paruelo J M, Leon R J C. Vegetation heterogeneity and diversity in flat and mountain landscapes of Patagonia (Argentina). Journal of Vegetation Science, 1996, 7(4): 599-608. [32] Tilman D. Causes, consequences and ethics of biodiversity. Nature, 2000, 405: 208-211. [33] Zhang J Q, Li Q, Ren Z W, et al . Effect of nitrogen addition on species richness and relationship between species and aboveground productivity of alpine meadow of Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 2010, 34(10): 1125-1131. [34] Cornwell W K, Grubb P J. Regional and local patterns in plant species richness with respect to resource availability. Oikos, 2003, 100(3): 417-428. [35] Olsen S L, Sandvik S M, Totland O. Influence of two N-fixing legumes on plant community properties and soil nutrient levels in an Alpine. Arctic Antarctic and Alpine Research, 2013, 45(3): 363-371. [36] Bai Y F, Wu J G, Clark C M, et al . Trade offs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia Grasslands. Global Change Biology, 2010, 16(1): 358-372. [37] Zhang L J, Yue M, Gu F X, et al . Coupling relationship between plant communities’ species diversity and soil factors in ecotone between desert and oasis in Fukang, Xinjiang. Chinese Journal of Applied Ecology, 2002, 13(6): 658-662. [38] Jouany C, Cruz P, Daufresne T, et al . Biological phosphorus cycling in grasslands: Interactions with nitrogen. In: Bunemann E K, Oberson A, Frossard E. Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling[M]. Berlin: Springer, 2011, 275-294. [39] Perroni Y, Garcia-Oliva F, Souza V. Plant species identity and soil P forms in an oligotrophic grassland-desert scrub system. Journal of Arid Environments, 2014, 108: 29-37. [40] Grime J P. Biodiversity and ecosystem function: The debate deepens. Science, 1997, 277: 1260-1261. [41] Tilman D. Secondary succession and the pattern of plant dominance along experiment nitrogen gradients. Ecological Monographs, 1987, 57: 189-214. [42] Vitousek P M, Aber J D, Howarth R W, et al . Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 1997, 7(3): 737-750. [43] Tilman D, Knops J, Wedin D, et al . The influence of functional diversity and composition on ecosystem processes. Science, 1997, 277: 1300-1302. [44] Lee M, Manning P, Rist J, et al . A global comparison of grassland biomass responses to CO 2 and nitrogen enrichment. Philosophical Transactions of the Royal Society B-Biological Sciences, 2010, 365: 2047-2056. [45] Zhen X X, Jin T T, Mu L F, et al . The relationship between plant species richness in Hulunbeier grassland and biomass and environment factors. Chinese Journal of Grassland, 2008, 30(6): 74-81. [46] Field R, Hawkins B A, Cornell H V, et al . Spatial species-richness gradients across scales: A meta-analysis. Journal of Biogeography, 2009, 36(1): 132-147. [47] Whittaker R J, Nogues-Bravo D, Araujo M B. Geographical gradients of species richness: A test of the water-energy conjecture of hawkins et al . (2003) using european data for five taxa. Global Ecology and Biogeography, 2007, 16(1): 76-89. [48] Tasker E M, Bradstock R A. Influence of cattle grazing practices on forest understory structure in north-eastern New South Wales. Austral Ecology, 2006, 31(4): 490-502. [49] Milchunas D G, Lauenroth W K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 1993, 63(4): 327-366. [50] Pykala J. Effects of restoration with cattle grazing on plant species composition and richness of semi-natural grasslands. Biodiversity and Conservation, 2003, 12(11): 2211-2226. [51] Proulx M, Mazumder A. Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems. Ecology, 1998, 79(8): 2581-2592. [52] Thompson K, Askew A P, Grime J P, et al . Biodiversity, ecosystem function and plant traits in mature and immature plant communities. Functional Ecology, 2005, 19(2): 355-358. [53] Kassen R, Buckling A, Bell G, et al . Diversity peaks at intermediate productivity in a laboratory microcosm. Nature, 2000, 406: 508-512. [54] Grace J B, Michael Anderson T, Smith M D, et al . Does species diversity limit productivity in natural grassland communities. Ecology Letters, 2007, 10(8): 680-689. [55] Moore D R J, Keddy P A. The relationship between species richness and standing crop in wetlands the importance of scale. Vegetatio, 1988, 79(1-2): 99-106. [56] Waide R B, Willig M R, Steiner C F, et al . The relationship between productivity and species richness. Annual Review of Ecology and Systematics, 1999, 30: 257-300. [57] Ni J, Wang G H, Bai Y F, et al . Scale-dependent relationships between plant diversity and above-ground biomass in temperate grasslands, south-eastern Mongolia. Journal of arid environments, 2007, 68(1): 132-142. [58] He J S, Bazzaz F A, Schmid B. Interactive effects of diversity, nutrients and elevated CO 2 on experimental plant communities. Oikos, 2002, 97, 337-348. [5] 左小安, 赵学勇, 赵哈林, 等. 科尔沁沙质草地群落物种多样性、生产力与土壤特性的关系. 环境科学, 2007, 28(5): 945-951. [8] 白永飞, 李凌浩, 王其兵, 等. 锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究. 植物生态学报, 2000, 24(6): 667-673. [9] 张志南, 武高林, 王冬, 等. 黄土高原半干旱区天然草地群落结构与土壤水分关系. 草业学报, 2014, 23(6): 313-319. [13] 安树青, 王峥峰, 朱学雷, 等. 土壤因子对次生森林群落物种多样性的影响. 武汉植物学研究, 1997, 15(2): 143-150. [17] 刘旻霞, 王刚. 高寒草甸植物群落多样性及土壤因子对坡向的响应. 生态学杂志, 2013, 32(2): 259-265. [18] 王长庭, 龙瑞军, 曹广民, 等. 高寒草甸不同类型草地土壤养分与物种多样性——生产力关系. 土壤通报, 2008, 39(1): 1-8. [19] 中国科学院内蒙宁夏综合考察队. 内蒙古植被[M]. 北京: 科学出版社, 1985. [20] 张庆, 牛建明, Buyantuyev, 等. 内蒙古短花针茅群落数量分类及环境解释. 草业学报, 2012, 21(1): 83-92. [21] 杨雪栋, 孙卫国, 宝音陶格涛. 内蒙古荒漠草原小针茅群落土壤养分的化学计量学特征. 中国草地学报, 2012, 34(5): 30-34. [22] 马文静, 张庆, 牛建明, 等. 物种多样性和功能群多样性与生态系统生产力的关系——以内蒙古短花针茅草原为例. 植物生态学报, 2013, 37(7): 620-630. [23] 卫智军, 韩国栋, 赵钢, 等. 中国荒漠草原生态系统研究[M]. 北京: 科学出版社, 2013. [24] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012. [27] 韩彬, 樊江文, 钟华平. 内蒙古草地样带植物群落生物量的梯度研究. 植物生态学报, 2006, 30(4): 553-562. [33] 张杰琦, 李奇, 任正炜, 等. 氮素添加对青藏高原高寒草甸植物群落物种丰富度及其与地上生产力关系的影响. 植物生态学报, 2010, 34(10): 1125-1131. [37] 张林静, 岳明, 顾峰雪, 等. 新疆阜康绿洲荒漠过渡带植物群落物种多样性与土壤环境因子的耦合关系. 应用生态学报, 2002, 13(6): 658-662. [45] 郑晓翾, 靳甜甜, 木丽芬, 等. 呼伦贝尔草原物种多样性与生物量、环境因子的关系. 中国草地学报, 2008, 30(6): 74-81. |