[1] Wang J Q. Five key indicators leading the direction of China dairy industry. China Animal Husbandry & Veterinary Medicine, 2011, 38: 5-9. [2] Pang Y Z, Liu Y P, Li X J, et al . Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment. Energy Fuels, 2008, 22: 2761-2766. [3] Wang B, Mao S Y, Yang H J, et al . Effects of alfalfa and cereal straw as a forage source on nutrient digestibility and lactation performance in lactating dairy cows. Journal of Dairy Science, 2014, 27: 7706-7715. [4] Friggens N, Emmans G C, RobertsonS, et al . The lactational responses of dairy cows to amount of feed and to the source of carbohydrate energy. Journal of Dairy Science, 1995, 78: 1734-1744. [5] Zhu W, Fu Y, Wang B, et al . Effects of dietary forage sources on rumen microbial protein synthesis and milk performance in early lactating dairy cows. Journal of Dairy Science, 2012, 96: 1727-1734. [6] Xin H S, Xu C C, Meng Q X, et al . Effect of steam-flaked technology on corn nutrition value and feed effective in dairy cattle. Chinese Journal of Animal Science, 2006, 42(10): 57-60. [7] Sauvant D, Milgen J V. Dynamic Aspects of Carbohydrate and Protein Breakdown and the Associated Microbial Matter Synthesis[M]. Germany: Delmar Publishers, 1995: 71-91. [8] Theurer C B. Invited review: Summary of steam-flaking corn or sorghum grain for lactating dairy cows. Journal of Dairy Science, 1999, 82: 1950-1959. [9] Zhong R Z, Li J G, Gao Y X, et al . Effects of substitution of different levels of steam-flaked corn for finely ground corn on lactation and digestion in early lactation dairy cows. Journal of Dairy Science, 2008, 91(10): 3931-3937. [10] Ji Z H, Wang S Y. Ministry of agriculture animal husbandry and veterinary(Office of feed work throughout the country). Feed Industry Standard Assembly[M]. Beijing: China Standard Press, 2002: 70-72, 79-80. [11] Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. [12] Ning K G. Practical Feed Analysis Manual[M]. Beijing: Chinese Academy of Agricultural Science and Technology Press, 1993. [13] Meng Q X. Nutrient Requirements of Dairy Cattle 7th[M]. Beijing: Chinese Agricultural University Press, 2002. [14] Menke K H, Steingass H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 1988, 28: 7-55. [15] Shen Y, Song Z H, Yang H J, et al . Research and development of automated gas recording system for in vitro fermentation based on virtual instrumentation. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(12): 159-163. [16] Makkar H, Becker K. Purine quantification in digesta from ruminants by spectrophotometric and HPLC methods. The British Journal of Nutrition, 1999, 81(2): 107-112. [17] Zinn R A, Owens F N. A rapid procedure for purine measurement and its use for estimating net rumen protein synthesis. Canadian Journal of Animal Science, 1986, 66(1): 157-166. [18] Ding H T, Xia D H, Qin S S, et al . Effect of bacillus subtilis on dairy cattle in vitro rumen fermentation. Feed Research, 2012, (1): 57-59. [19] Wang J Q. Methods in Ruminant Nutrition Research[M]. Beijing: Modern Education Press, 2011. [20] Groot J C, Cone J W, Williams B A, et al . Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Animal Feed Science and Technology, 1996, 64(1): 77-89. [21] Menke K H, Raaba L, Salewskia A, et al . The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro . Journal of Agricultural Science, 1979, 93: 217-222. [22] Sun G Q, Lv Y Y, Zhang J J, et al . A study on the associative effect of whole corn silage-peanut vine and Leymus chinensis by rumen fermentation in vitro . Acta Prataculturae Sinica, 2014, 23(3): 224-231. [23] Yang F. Animal Nutrition (2 edition)[M]. Beijing: Chinese Academy of Agricultural Press, 1999: 60-75. [24] Cui Y Z, Xu X M, Xu G Z, et al . Evaluation of Steam-flaked Corn and Corn Grain Nutritional Value in vitro Gas Production Technique[C]. Zhengzhou: The Third China Dairy Industry Conference, 2012. [25] Chen T. Effects of Steam-Flaked Corn on the Performance and Excretion of Nitrogen and Phosphorus in Dairy Cows[D]. Baoding: Hebei Agricultural University, 2009. [26] Galyean M L, Wagner D G, Johnson R K. Studies on the feasibility of prediction feedlot performance from certain laboratory grain analyses. Journal of Animal Science, 1978, 46(1): 9-18. [27] Xin H S, Ren L P, Sun C M, et al . Effect of combination of coated urea and steam-flaked corn grains on ruminal ammonia release and fermentation traits in vitro . Journal of China Agricultural University, 2007, 12(3): 41-45. [28] Erdman R A, Hemken R W, Bull L S. Dietary sodium bicarbonate and magnesium oxide for early postpartum lactating dairy cows: effects on production, acid-base metabolism, and digestion. Journal of Dairy Science, 1988, 71: 754-761. [29] Yang W Z, Beauchemin K A, Rode L M. Effects of grain processing, forage-to-concentrate ratio, and forage particle size on rumen pH and digestion by dairy cows. Journal of Dairy Science, 2001, 84: 2203-2216. [30] Ramirez R G, Kiesling H E, Galyean M L, et al . Influence of steam-flaked, steam-whole or whole shelled corn on performance and digestion in beef steers. Journal of Animal Science, 1985, 61: 1-8. [31] Hales K E, McMeniman J P, Leibovich J, et al . Effects of varying bulk densities of steam-flaked corn and dietary roughage concentration on in vitro fermentation, performance, carcass quality, and acid-base balance measurements in finishing steers. Journal of Animal Science, 2010, 88: 1135-1147. [32] Wang G Y, Mao H M, Wen J K, et al . Effect of corn processing on rumen fluid pH. Feed Industry, 2005, 26(5): 29-30. [33] Murphy J J, Kennelly J J. Effect of protein concentration and protein source on the degradability of dry matter and protein in situ. Journal of Dairy Science, 1987, 70(9): 1841. [34] Li Y F, Hao J X, Ma Y Y, et al . Nutritive value evaluation of different types of feeds by in vitro ruminal fermentation method. Chinese Journal of Animal Nutrition, 2013, 25(10): 2403-2413. [35] Bergman E N. Energy contribution of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews, 1990, 70: 567-590. [36] Corona L, Owens F N, Zinn R A. Impact of corn vitreouness and processing on site and extent of digestion by feedlot cattle. Journal of Animal Science, 2006, 84: 3020-3031. [37] Zinn R A, Owens F N, Ware R A. Flaking corn: processing mechanics, quality standards, and impacts on energy availability and performance of feedlot cattle. Journal of Animal Science, 2002, 80: 1145-1156. [38] Plascencia A, González-Vizcarra V M, López-Soto M A, et al . Influence of cracked, coarse ground or fine ground corn on digestion, dry matter intake and milk yield in Holstein Cows. Journal of Applied Animal Research, 2009, 35: 149-154. [39] Lee S Y, Kim W Y, Ko J Y, et al . Effects of corn processing on in vitro and in situ digestion of corn grain in Holstein steers. Asian-Australian Journal of Animal Science, 2002, 15(6): 851-858. [40] Meyer J, Wolin A. Theoretical rumen fermentation balance. Journal of Dairy Science, 1960, 43: 1452-1459. [41] Cui Z H, Hao L Z, Liu S J, et al . Evaluation of the fermentation characteristics of mixed oat green hay and native pastures in the Qinghai plateau using an in vitro gas production technique. Acta Prataculturae Sinica, 2012, 21(3): 250-257. [42] Yang H J, Feng Y L. Effects of cellulose to starch ratio in substrate on in vitro volatile fatty acids yield with equal-nitrogen purified substrate. Chinese Journal of Animal Science, 2003, 39(5): 9-11. [43] Tang S X, Jiang H L, Zhou C S, et al . Effects of different forage species on in vitro gas production characteristics. Acta Prataculturae Sinica, 2005, 14(3): 72-77. [44] Nsahlai I V, Siaw D E K A, Osuji P O. The relationships between gas production and chemical composition of 23 browses of the Genus sesbania . Journal Science of Food and Agriculture, 1994, 65: 13-20. [6] 辛杭书, 许曾曾, 孟庆翔, 等. 蒸汽压片技术对玉米营养价值及奶牛饲用效果的影响. 中国畜牧杂志, 2006, 42(10): 57-60. [10] 季之华, 王随元. 农业部畜牧兽医局(全国饲料工作办公室). 饲料工业标准汇编[M]. 北京: 中国标准出版社, 2002: 70-72, 79-80. [12] 宁开桂. 实用饲料分析手册[M]. 北京: 中国农业科技出版社, 1993. [15] 沈英, 宋正河, 杨红建, 等. 基于虚拟仪器技术的饲料体外发酵产气自动记录系统的研制. 农业工程学报, 2006, 22(12): 159-163. [18] 丁洪涛, 夏冬华, 秦珊珊, 等. 枯草芽孢杆菌对奶牛体外瘤胃发酵的影响. 饲料研究, 2012, (1): 57-59. [19] 王加启. 反刍动物试验研究方法[M]. 北京: 现代教育出版社, 2011. [22] 孙国强, 吕永艳, 张杰杰, 等. 利用体外瘤胃发酵法研究全株玉米青贮与花生蔓和羊草间的组合效应. 草业学报, 2014, 23(3): 224-231. [23] 杨凤. 动物营养学2版[M]. 北京: 中国农业出版社, 1999: 60-75. [24] 崔彦召, 徐晓明, 徐国忠, 等. 体外产气法评定蒸汽压片玉米和玉米颗粒的营养价值[C]. 郑州: 第三届中国奶业大会, 2012. [25] 陈涛. 蒸汽压片玉米对奶牛生产性能和氮磷排放的影响[D]. 保定: 河北农业大学, 2009. [27] 辛杭书, 任丽萍, 孙长勉, 等. 包被尿素与蒸汽压片玉米组合对活体外瘤胃氨氮释放和发酵参数的影响. 中国农业大学学报, 2007, 12(3): 41-45. [32] 王桂瑛, 毛华明, 文际坤, 等. 玉米的加工处理对瘤胃液pH的影响. 饲料工业, 2005, 26(5): 29-30. [34] 李袁飞, 郝建祥, 马艳艳, 等. 体外瘤胃发酵法评定不同类型饲料的营养价值. 动物营养学报, 2013, 25(10): 2403-2413. [41] 崔占鸿, 郝力壮, 刘书杰, 等. 体外产气法评价青海高原燕麦青干草与天然牧草组合效应. 草业学报, 2012, 21(3): 250-257. [42] 杨红建, 冯仰廉. 不同纤维素与淀粉比率等氮纯化饲粮瘤胃发酵挥发性脂肪酸产生量. 中国畜牧杂志, 2003, 39(5): 9-11. [43] 汤少勋, 姜海林, 周传社, 等. 不同牧草品种对体外发酵产气特性的影响. 草业学报, 2005, 14(3): 72-77. |