[1] Greig-Smith P. Quantitative Plant Ecology (3rd edn)[M]. Oxford: Blackwell Scientific Publications, 1983: 105-128. [2] Zhang Z H, Hu G, Zhu J D, et al . Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests, SW China. Ecological Research, 2010, 25(6): 1151-1160. [3] Xu S H, Shang Z H, Ma Y S, et al . Analysis of interspecific association in degraded meadow communities in the Headwater Area of Yellow River on Tibetan Plateau. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(6): 1222-1227. [4] Xing F, Guo J X. Comparative analysis of interspecific association for three grazing successional stages of Cleistogenes squarrosa steppe. Acta Phytoecologica Sinica, 2001, 25(6): 693-698. [5] Wang C T, Cao G M, Wang Q L, et al . Changes in plant biomass and species composition of alpine Kobresia meadows along altitudinal gradient on the Qinghai-Tibetan Plateau. Science in China Series C: Life Sciences, 2008, 51(1): 86-94. [6] Zhou X R, Guo Z G, Guo X H. The role of plateau pika and plateall zokor in alpine meadow. Pratacultural Science, 2010, 27(5): 38-44. [7] Guo Z G, Li X F, Liu X Y, et al . Response of alpine meadow communities to burrow density changes of plateau pika ( Ochotona curzoniae ) in the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2012, 32: 44-49. [8] Guo Z G, Zhou X R, Hou Y. Effect of available burrow densities of plateau pika ( Ochotona curzoniae ) on soil physicochemical property of the bare land and vegetation land in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2012, 32: 104-110. [9] Jia T T, Mao L, Guo Z G. Effect of available burrow densities of plateau pika ( Ochotona curzoniae ) on plant niche of alpine meadow communities in the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2014, 34(4): 869-877. [10] Schluter D. A variance test for detecting species associations, with some example applications. Ecology, 1984, 65: 998-1005. [11] Pech R P, Arthur A D, Yanming Z, et al . Population dynamics and responses to management of plateau pikas Ochotona curzoniae . Journal of Applied Ecology, 2007, 44(3): 615-624. [12] Wesche K, Nadrowski K, Retzer V. Habitat engineering under dry conditions: the impact of pikas ( Ochotona pallasi ) on vegetation and site conditions in southern Mongolian steppes. Journal of Vegetation Science, 2007, 18(5): 665-674. [13] Wang W Y, Wang Q J, Jing Z C, et al . Effects of vegetation cover change of Alpine Kobersia Meadow on plant community structure and diversity in source region of the Yangtze and Yellow River. Resources Science, 2006, 28(2): 118-124. [14] Fang F, Hu Y K, Zhang W, et al . Numerical analysis of inter-specific relationships in Alpine steppe community in Bayanbulak. Acta Ecologica Sinica, 2012, 32(6): 1898-1907. [15] Zhang X N, Lv G H, Yang X D, et al . Responses of desert plant diversity, community and interspecific association to soil salinity gradient. Acta Ecologica Sinica, 2013, 33(18): 5714-5722. [16] Gavilán R G, Sanchez-Mata D, Escudero A, et al . Spatial structure and interspecific interactions in Mediterranean high mountain vegetation (Sistema Central, Spain). Israel Journal of Plant Sciences, 2002, 50(3): 217-228. [17] St Clair S B, Cavard X, Bergeron Y. The role of facilitation and competition in the development and resilience of aspen forests. Forest Ecology and Management, 2013, 299: 91-99. [18] Hurlburt. A coefficient of interspecific association. Ecology, 1969, 50: 1-9. [3] 徐松鹤, 尚占环, 马玉寿, 等. 黄河源区退化高寒草地植物种间联结性分析. 西北植物学报, 2008, 28(6): 1222-1227. [4] 邢福, 郭继勋. 糙隐子草草原3个放牧演替阶段的种间联结对比分析. 植物生态学报, 2001, 25(6): 693-698. [6] 周雪荣, 郭正刚, 郭兴华. 高原鼠兔和高原鼢鼠在高寒草甸中的作用. 草业科学, 2010, 27(5): 38-44. [9] 贾婷婷, 毛亮, 郭正刚. 高原鼠兔有效洞穴密度对青藏高原高寒草甸群落植物生态位的影响. 生态学报, 2014, 34(4): 869-877. [13] 王文颖, 王启基, 景增春, 等. 江河源区高山嵩草草甸覆被变化对植物群落特征及多样性的影响. 资源科学, 2006, 28(2): 118-124. [14] 房飞, 胡玉昆, 张伟, 等. 高寒草原植物群落种间关系的数量分析. 生态学报, 2012, 32(6): 1898-1907. [15] 张雪妮, 吕光辉, 杨晓东, 等. 基于盐分梯度的荒漠植物多样性与群落、种间联接响应. 生态学报, 2013, 33(18): 5714-5722. |