[1] Williamson V M, Hussey R S. Nematode pathogenesis and resistance in plants. The Plant Cell, 1996, 8(10): 1735-1745. [2] Sasser J N. Plant Pasasitic Nematodes: the Farmer’s Hidden Enemy[M]. Beijing: Popular Science Press, 1992. [3] Giannakou I O, Anastasiadis I. Evaluation of chemical strategies as alternatives to methyl bromide for the control of root-knot nematodes in greenhouse cultivated crops. Crop Protection, 2005, 24: 499-506. [4] Cao Z P, Yu Y L, Chen G K, et al . Impact of soil fumigation practices on soil nematodes and microbial biomass. Pedosphere, 2004, 14(3): 387-393. [5] Tan J J, Ye J R. Research advance in pathogenic mechanism of pine wood nematode disease. Journal of Huazhong Agricultural University, 2003, 22(6): 613-617. [6] Zhai H, Guan X Q, Zhao C Z, et al . Screening of Chinese grape species resistant to M. incognita . Acta Horticulturae Sinica, 2000, 27(1): 27-31. [7] Li W C, Dong H, Wang X F. Effects of root-knot nematode on growth, quality and yield of cucumber in greenhouse. Journal of Shandong Agricultural University, 2006, 37(1): 35-38. [8] Bin S Y, Yao S M, Lin J T, et al . Some physiological changes of peanut plants infected with Meloidogyne arenaria . Journal of Huazhong Agricultural University, 1999, 18(2): 121-124. [9] Guo Y Y, Xu K, Wang X F. Effects of Meloidogyne incognitaon on the growth and development of ginger. Acta Agriculturae Boreali-occidentalis Sinica, 2005, 14(5): 155-158. [10] Chen Y H, Ye J R, Wei C J, et al . Effects of pine wood nematode (PWN) infection on water regime and metabolism of related to hosts. Acta Phytopathologica Sinica, 2005, 35(3): 201-207. [11] Tan J J, Ye J R, Hao D J, et al . Effects of pine wood nematode, Bursaphelenchus xylophilus , on some physio-biochemical indexes of Japanese black pine, Pinus thunbergii . Acta Phytopathologica Sinica, 2011, 41(1):44-48. [12] Hao Y J, Zhai H, Wang S H. Change of physiochemical substances in Malus baccata infected with Trichodorus nanjingensis . Acta Phytopathologica Sinica, 1999, 29(1): 82-85. [13] Song F M, Zheng Z, Ge Q X. Hydroxyproline-rich glycoproteins in plant-pathogen interactions in the accumulation, the role and regulation. Plant Physiology Communications, 1992, 28(2): 141-145. [14] Lamport D T, Miller D H. Hydroxyproline arabinosides in the plant kingdom. Plant Physiology, 1971, 48: 454-456. [15] Zhai H, Hao Y J, Wang S H. Preliminary study on the resistance mechanism of apple rootstock to a stubby root nematode. Acta Phytophylacica Sinica, 1999, 26(3): 208-212. [16] Zhao X F, Mi Z X. Study on content of hydroxyproline in cell wall in relation to resistance to Crecospora sojina hare. Soybean Science, 2000, 19(2): 146-149. [17] Peng D L, Tang W H. Advance of resistance gene Mi to root-knot nematodes in tomato. Journal of Shenyang Agricultural University, 2001, 32(3): 220-223. [18] Sasser J N, Eisenback J D, Carter C C, et al . The international Meloidogyne project-its goals and accomplishments. Annual Review Phytopathology, 1983, 21: 271-288. [19] Lopez-Perez J A, Strange M L, Kaloshian I, et al . Differential response of Mi gene-resistant tomato rootstocks to root-knot nematodes ( Meloidogyne incognita ). Crop Protection, 2006, 25: 382-388. [20] Rivard C L, Louws F J. Tomato grafting for disease resistance and increased productivity. Sustainable Agriculture Research &Education, 2011, 12: 1-8. [21] Taylor A L, Sasser J N. Plant Root-knot Nematode[M]. Yang B J, translation. Beijing: Science Press, 1983. [22] Zhang L Q, Zhang F Y, Hasi A. Research progress on alfalfa salt tolerance. Acta Prataculturae Sinica, 2012, 21(6): 296-305. [23] Jia S S, Gao R G, Xu K. Screening and evaluation of tomato rootstocks for resistance to Meloidogyne incognita . Scientia Agricultura Sinica, 2009, 42(12): 4301-4307. [24] Mao A J, Chai M, Yu S C, et al . Technique of identification for resistance to root-knot nematode in tomato and its application. Acta Agriculture Boreali-occidentalis Sinica, 2005, 14(4):140-144. [25] Boiteux L S, Charchar J M. Genetic resistance to root-knot nematode ( Meloidogyne javanica ) in eggplant ( Solanum melongena ). Plant Breeding, 1996, (3): 198-200. [26] Zhao S J, Liu H S, Dong X C. Techniques of Plant Physiological Experiment[M]. Beijing: China Agricultural Science and Technology Press, 1998. [27] Feng J, Chen Q Y, Shi L Y. Accumulation of HRGP in cell wall of cotton treated with Fusarium oxysporum F. SP. Vasinfectum related to the resistance to Fusarium wilt . Acta Phytopathologica Sinica, 1995, 25(2): 133-138. [28] Shailasree S, Ramachandra Kini K, Deepak S, et al . Accumulation of hydroxyproline-rich glycoproteins in pearl millet seedlings in response to Sclerospora graminicola infection. Plant Science, 2004, 167: 1227-1234. [29] Cao F X, Wang M, Teng T, et al . Influence of pine wood nematode on plasma-membrane permeability and soluble sugar content of Pinus elliottii leaves. Journal of Central South Forestry University, 2006, 26(6): 169-171. [30] Zhang H S, Zhao G Q, Li M F, et al . Physiological responses of Pennisetum longissimum var. intermedium seedlings to PEG, low temperature and salt stress treatments. Acta Prataculturae Sinica, 2014, 23(2): 180-188. [31] Liu A R, Zhang Y B, Zhong Z H, et al . Effects of salt stress on the growth and osmotica accumulation of Coleus blumei . Acta Prataculturae Sinica, 2013, 22(2): 211-218. [32] Shi L R, Niu Y L, Li M Z. Physiological response of Sonchus brachyotus to salt stress. Acta Prataculturae Sinica, 2010, 19(6): 272-275. [33] Liu D W, Duan Y X, Chen L J, et al . Physiological mechanism of huipizhiheidou resistant to Race 3 of soybean cyst nematode. Soybean Science, 2010, 29(3): 471-473. [34] Lewis S A, McClure M A. Free amino acids in roots of infected cotton seedlings resistant and susceptible to Meloidogyne incognita . Journal of Nematology, 1975, 7(1): 10-15. [35] Liu Y X, Jiang F, Zhang N, et al . Relationship between osmoregulation and Bacterial wilt resistance of grafted pepper. Acta Horticulturae Sinica, 2011, 38(5): 903-910. [36] Esquerre-Tugaye M T, Lafitte C, Mazau D, et al . Cell surfaces in plant-microorganism interactions. Plant Physiology, 1979, 64: 320-326. [37] Sujeeth N, Deepak S, Shailasree S, et al . Hydroxyproline-rich glycoproteins accumulate in pearl millet after seed treatment with elicitors of defense responses against Sclerospora graminicola . Physiological and Molecular Plant Pathology, 2010, 74: 230-237. [2] Sasser J N. 植物寄生线虫——农业的隐蔽敌害[M]. 北京: 科学普及出版社, 1992. [5] 谈家金, 叶建仁. 松材线虫病致病机理的研究进展. 华中农业大学学报, 2003, 22(6): 613-617. [6] 翟衡, 管雪强, 赵春芝, 等. 中国葡萄抗南方根结线虫野生资源的筛选. 园艺学报, 2000, 27(1): 27-31. [7] 李文超, 董会, 王秀峰. 根结线虫对日光温室黄瓜生长、果实品质及产量的影响. 山东农业大学学报(自然科学版), 2006, 37(1): 35-38. [8] 宾淑英, 姚圣梅, 林进添, 等. 花生根结线虫对花生植株主要生理指标的影响. 华中农业大学学报, 1999, 18(2): 121-124. [9] 郭衍银, 徐坤, 王秀峰. 南方根结线虫对生姜生长发育的影响. 西北农业学报, 2005, 14(5): 155-158. [10] 陈玉惠, 叶建仁, 魏初奖, 等. 松材线虫侵染对马尾松、黑松水分及其相关代谢的影响. 植物病理学报, 2005, 35(3): 201-207. [11] 谈家金, 叶建仁, 郝德君, 等. 松材线虫对黑松一些生理生化指标的影响. 植物病理学报, 2011, 41(1): 44-48. [12] 郝玉金, 翟衡, 王寿华. 山定子感染南京毛刺线虫后几种生理生化物质的变化. 植物病理学报, 1999, 29(1): 82-85. [13] 宋凤鸣, 郑重, 葛起新. 富含羟脯氨酸糖蛋白在植物-病原物相互作用中的积累、作用及调控. 植物生理学通讯, 1992, 28(2): 141-145. [15] 翟衡, 郝玉金, 王寿华. 苹果砧木对南京毛刺线虫的抗性机制初探. 植物保护学报, 1999, 26(3): 208-212. [16] 赵小钒, 弭忠祥. 细胞壁羟脯氨酸的含量与大豆灰斑病抗性关系的研究. 大豆科学, 2000, 19(2): 146-149. [17] 彭德良, 唐文华. 番茄抗根结线虫Mi基因研究进展. 沈阳农业大学学报, 2001, 32(3): 220-223. [21] 泰勒 A L, 萨塞 J N. 植物根结线虫[M]. 杨宝君, 译. 北京: 科学出版社, 1983: 5-43. [22] 张立全, 张凤英, 哈斯阿古拉. 紫花苜蓿耐盐性研究进展. 草业学报, 2012, 21(6): 296-305. [23] 贾双双, 高荣广, 徐坤. 番茄砧木对南方根结线虫抗性鉴定. 中国农业科学, 2009, 42(12): 4301-4307. [24] 毛爱军, 柴敏, 于拴仓, 等. 番茄抗根结线虫接种鉴定技术及其应用. 西北农业学报, 2005, 14(4): 140-144. [26] 赵世杰, 刘华山, 董新纯. 植物生理学实验指导[M]. 北京: 中国农业科技出版社, 1998. [27] 冯洁, 陈其煐, 石磊岩. 枯萎菌诱导棉花细胞壁富含羟脯氨酸糖蛋白积累与枯萎病抗性间的关系. 植物病理学报, 1995, 25(2): 133-138. [29] 曹福祥, 王猛, 滕涛, 等. 松材线虫对湿地松叶片质膜和可溶性糖的影响. 中南林学院学报, 2006, 26(6): 169-171. [30] 张怀山, 赵桂琴, 栗孟飞, 等. 中型狼尾草幼苗对PEG、低温和盐胁迫的生理应答. 草业学报, 2014, 23(2): 180-188. [31] 刘爱荣, 张远兵, 钟泽华, 等. 盐胁迫对彩叶草生长和渗透调节物质积累的影响. 草业学报, 2013, 22(2): 211-218. [32] 时丽冉, 牛玉璐, 李明哲. 苣荬菜对盐胁迫的生理响应. 草业学报, 2010, 19(6): 272-275. [33] 刘大伟, 段玉玺, 陈立杰, 等. 灰皮支黑豆抗大豆胞囊线虫3号生理小种的生理机制. 大豆科学, 2010, 29(3): 471-473. [35] 刘业霞, 姜飞, 张宁, 等. 嫁接辣椒对青枯病的抗性及其与渗透调节物质的关系. 园艺学报, 2011, 38(5): 903-910. |