[1] Wang M X, Zhang R J, Zheng X H. The source and sink of greenhouse gas. Climatic and Environmental Research, 2000, 5(1): 75-79. [2] Han Q T, Xu X S, Lu C Q, et al . Net exchanges of CO 2 , CH 4 , and N 2 O between China’s terrestrial ecosystems and the atmosphere and their contributions to global climate warming. Journal of Geophysical Research, 2011, 116: G02011, doi:10. 1029/2010 JG001393. [3] Aselmann I, Crutzen P J. Global distribution of natural freshwater wetlands and rice paddies, their net primary production, seasonality and possible methane emissions. Journal of Atmospheric Chemistry, 1989, 8: 307-358. [4] Whiting G J, Chanton J P. Greenhouse carbon balance of wetlands: methane emission versus carbon equestration. Tellus, 2001, B53: 521-528. [5] Bridgham S D, Megonigal J P, Keller J K. The carbon balance of North American wetlands. Wetlands, 2006, 26: 889-916. [6] Brix H, Sorrell B K, Lorenzen B. Are phragmites-dominated wetlands a net source or net sink of greenhouse gases. Aquatic Botany, 2001, 69: 313-324. [7] Bubier J L, Moore T R. An ecological perspective on methane emission from northern wetlands. Trends in Ecology and Evolution, 1994, 9: 460-464. [8] Bubier J L, Bhatia G, Moore T R, et al . Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada. Ecosystem, 2003, 6: 353-367. [9] Alm J, Schulman J, Walden H, et al . Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology, 1999, 80: 161-174. [10] Alm J, Talanov A, Saamio S, et al . Reconstruction the carbon balance for microsites in a boreal oligotrophic pine fen, Finland. Oecologia, 1997, 110: 423-431. [11] Whiting G J. Exchange in the Hudson-Bay lowlands-community characteristics and multispectral reflectance properties. Journal of Geophysical Research, 1994, 99: 1519-1528. [12] Wand J L, Zhong Z M, Wang Z H, et al . Soil C/P distribution characteristics of alpine steppe ecosystems in the Qinhai-Tibetan Plateau. Acta Prataculturae Sinica, 2014, 23(2): 9-19. [13] Zhao P, Dai W A, Du M X, et al . Response of Amorpha fruiticosa planting to soil nutrients in the Tibetan Plateau. Acta Prataculturae Sinica, 2014, 23(3): 175-181. [14] Wei W B, Li T, Li J Z. Gahai wetland ecosystem conservation and managment. Wetland Science and Management, 2010, 6(3): 32-34. [15] Juutinen S, Alm J, Martikainen P, et al . Effects of spring flood and water level draw-down on methane dynamics in the littoral zone of boreal lakes. Freshw Biology, 2001, 46: 855-869. [16] Kaki T, Ojala A, Kankaala P. Diel variation in methane emissions from stands of Phragmites australis (Cav.) Trin. ex Steud. and Typha latifolia L. in a boreal lake. Aquat Bottany, 2001, 71(4): 259-271. [17] Hirota M Y, Tang Y, Hu Q, et al . Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biology and Bio-chemistry, 2004, 36: 737-748. [18] Chen H, Yao S, Wu N, et al . Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoige Plateau and their implications. Journal of Geophysical Research: Atmospheres, 2008, 113:D12303, doi:10.1029/2006JD008072. [19] Mosier A R. Impact of agriculture on soil consumption of atmospheric CH 4 and a comparison of CH 4 and N 2 O flux in subarctic, temperate and tropical grasslands. Nutrient Cycling in Agro-ecosystems, 1997, 49(1-3): 71-83. [20] West A E, Schmidt S K. Acetate stimulates atmospheric CH 4 oxidation by an alpine tundra soil. Soil Biology and Biochemistry, 1999, 31: 1649-1655. [21] Pei Z Y, Hua Q Y, Zhou C P, et al . Fluxes of CO 2 , CH 4 and N 2 O from alpine grassland in the Tibetan Plateau. Journal of Geographical Sciences, 2003, 13(1): 27-34. [22] Dong Y, Zhang S, Qi Y. Fluxes of CO 2 , N 2 O and CH 4 from typical temperate grassland in Inner Mongolia and its daily variation. Chinese Science Bulletin, 2000, 45(17): 1590-1594. [23] Kammann C. Methane flux from differentially managed grassland study plots: the important role of CH 4 oxidation in grassland with a high potential for CH 4 production. Environmental Pollution, 2001, 115: 261-273. [24] Joabsson A, Chistensen T R. Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Global Change Biology, 2001, 7: 919-932. [25] Zhang F W, Liu A H, Li Y N, et al . CO 2 flux in alpine wetland ecosystem on the Qingha-Tibetan Plateau. Acta Ecologica Sinica, 2008, (2): 453-462. [26] Danevcic T, Mandic-Mulec I, Stres B, et al . Emissions of CO 2 , CH 4 and N 2 O from Southern uropean peatlands. Soil Biology and Biochemistry, 2010, 42: 1437-1446. [27] Ojanen P, Minkkinen K R, Almb J K, et al . Soil-atmosphere CO 2 , CH 4 and N 2 O fluxes in boreal forestry-drained peatlands. Forest Ecology and Management, 2010, 260: 411-421. [28] Salm J R, Maddison M, Tammik S, et al . Emissions of CO 2 , CH 4 and N 2 O from undisturbed, drained and mined peatlands in Estonia. Hydrobiologia, 2012, 692: 41-55. [29] Klemedtsson L, Von-Arnold K, Weslien P, et al . Soil C, N ratio as a scalar parameter to predict nitrous oxide emissions. Global Change Biology, 2005, 11: 1142-1147. [30] Hayden M J, Ross D S. Denitrification as a nitrogen removal mechanism in a Vermont peatland. Journal of Environment Quality, 2005, 34: 2052-2061. [31] Li X D, Shen X K, Zhang C P, et al . Factors influencing soil respiration in a pea field in the Loess Plateau. Acta Prataculturae Sinica, 2014, 23(5): 24-30. [32] Huttunen J T, Nykänen H, Turunen J, et al . Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennosca-ndia. Atmospheric Environment, 2003, 37: 147-151. [33] Freeman C, Nevison G B, Kang H. Contrasted effects of simulated drought on the production and oxidation of methane in a mid Wales wetland. Soil Biology and Biochemistry, 2002, 34: 61-67. [34] Liikanen A, Huttunen J T, Karjalainen S M, et al . Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff waters. Ecological Engineering, 2006, 26: 241-251. [35] Koh H S, Ochs C A, Yu K. Hydrologic gradient and vegetation controls on CH 4 and CO 2 fluxes in a spring-fed forested wetland. Hydrobiologia, 2009, 630: 271-286. [36] Hirota M, Senga Y, Seike Y, et al . Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan. Chemosphere, 2007, 68(3): 597-603. [37] Sun Z G, Liu J S, Yang J S, et al . Nitrification denih-ification and N 2 O emission of typical Calamagrostis angustifolia wetland soils in San jiang Plain. Chinese Journal of Applied Ecology, 2007, 18(1): 185-192. [38] Dowrick D J, Hughes S, Freeman C, et al . Nitrous oxide emissions from a gully mire in mid Wales, U K, under simulated summer drought. Biogeochemistry, 1999, 44: 151-162. [39] Sun Z G, Liu J S, Yang J S, et al . N 2 O flux characteristics and emission contributions of Calamagrostis angustifolia wetland during growth and non-growth seasons. Acta Prataculturae Sinica, 2009, 18(6): 242-247. [40] Wang L L, Sun Z G, Mou X J, et al . A preliminary study on carbon dioxide, methane and nitrous oxide fluxes from intertidal flat wetlands of the Yellow River estuary. Acta Prataculturae Sinica, 2011, 20(3): 51-61. [41] Yang S H, Chen G X, Lin J H, et al . N 2 O emission from woody plants and its relation to their physiological activities. Chinese Journal of Applied Ecology, 1995, 6(4): 337-340. [1] 王明星, 张仁健, 郑循华. 温室气体的源与汇. 气候与环境研究, 2000, 5(1): 75-79. [12] 王建林, 钟志明, 王忠红, 等. 青藏高原高寒草原生态系统土壤碳磷比的分布特征. 草业学报, 2014, 23(2):9-19. [13] 赵萍,代万安,杜明新,等. 青藏高原种植紫穗槐对土壤养分的响应. 草业学报, 2014, 23(3): 175-181. [14] 魏文彬, 李婷, 李俊臻. 尕海湿地生态系统的保护与管理. 湿地科学与管理, 2010, 6(3): 32-34. [25] 张法伟, 刘安花, 李英年, 等. 青藏高原高寒湿地生态系统CO 2 通量. 生态学报, 2008, (2): 453-462. [31] 李旭东,沈晓坤,张春平, 等. 黄土高原农田土壤呼吸特征及其影响因素. 草业学报, 2014, 23(5): 24-30. [37] 孙志高,刘景双, 杨继松,等. 三江平原典型小叶章湿地土壤硝化-反硝化作用与氧化亚氮排放. 应用生态学报, 2007, 18(1): 185-192. [39] 孙志高, 刘景双, 杨继松,等. 生长季与非生长季小叶章湿地N 2 O通量特征及排放贡献.草业学报, 2009, 18(6): 242-247. [40] 王玲玲, 孙志高, 牟晓杰,等. 黄河口滨岸潮滩湿地 CO 2 、CH 4 和 N 2 O通量特征初步研究.草业学报, 2011, 20(3): 51-61. [41] 杨思河, 陈冠雄, 林继慧,等. 几种木本植物的N 2 O释放与某些生理活动的关系. 应用生态学报, 1995, 6(4): 337-340. |