[1] Kou Y X, Lv S Q, Liu J Q, et al . The review of Helianthus tuberosus L. and its comprehensive utilization as a bioenergy plant rich in oligosaccharide. Chinese Bulletin of Life Sciences, 2014, 26: 1-7. [2] Jia J D, Ma L L, Jiang D P, et al . Development Strategy for the Science and Technology Innovation of Biomass Energy Industry[M]. Beijing: Chemical Industry Press, 2014: 249-253. [3] Roberfroid M B. Dietary fiber, inulin and oligofructose: a review comparing their physiological effects. Critical Reviews in Food Science and Nutrition, 1993, 33: 103-148. [4] Niness K R. Inulin and oligofructos: what are they. Journal Nutrition, 1999, 129(S): 1402-1406. [5] Zhuang D F, Jiang D, Liu L. Assessment of bioenergy potential on marginal land in China. Renewable & Sustainable Energy Reviews, 2011, 15: 1050-1056. [6] Zhao G M, Mehta S K, Liu Z P. Use of saline aquaculture wastewater to irrigate salt-tolerant Jerusalem artichoke and sunflower in semiarid coastal zones of China. Agricultural Water Management, 2010, 97: 1987-1993. [7] Wang P J, Wang K C, Mei F S, et al . Utilization status and development prospects of Helianthus tuberosus germplasm resources in Yunyang Mountainous area. Journal of Changjiang Vegetables, 2013, 12: 72-74. [8] Long X H, Liu Z P, Zheng Q S, et al . Effects of seawater with different concentrations on growth and physiological and biochemical characteristics of Helianthus tuberosus L. seedlings. Acta Ecologica Sinica, 2005, 29: 1881-1890. [9] Denoroy P. The crop physiology of Helianthus tuberosus L.: A model orientated view. Biomass and Bioenergy, 1996, 11: 11-32. [10] Zhao G M, Liu Z P, Chen M D. Effect of saline aquaculture effluent on salt-tolerant Jerusalem artichoke ( Helianthus tuberosus L.) in a semi-arid coastal area of China. Pedoaphere, 2006, 16: 762-769. [11] Zhong Q W, Wang Y, Wang L H, et al . Change of growth, development and photosynthesis indicators of Jerusalem artichoke. Acta Bot Boreal-Occident Sinica, 2007, 27: 1843-1848. [12] Huang Z R, Long X H, Liu Z P, et al . Effect of KNO 3 on the growth and photosynthetic of two varieties of Helianthus tuberosus L. seedlings under NaCl stress. Acta Prataculturae Sinica, 2011, 20: 82-88. [13] Sun X E, Liu Z P, Long X H. Effects of different levels of magnesium supply on the seedling’s growth, photosynthesis, and chlorophyll fluorescence characteristics of two Helianthus tuberous varieties. Chinese Journal of Ecology, 2012, 31: 823-829. [14] Lu Y, Ye H J, Geng S B, et al . Effects of NaCl stress on growth, leaf photosynthetic parameters and ion distribution of Helianthus tuberosus L. seedling. Journal of Plant Resources and Environment, 2010, 19: 86-91. [15] Long X H, Liu Z P. Function of ideal plant type in breeding of Helianthus tuberosus L. for high yield and good grain quality. Chinese Agricultural Science Bulletin, 2010, 26(9): 263-266. [16] Gao K, Han G D, Xu S T. Study of photosynthesis and transpiration of energy plant Helianthus tuberosus L. in different existed environment. Northern Horticulture, 2011, 3: 60-62. [17] Dai X H, Kang J H, Xu C J. Photosynthetic rate determination of Jerusalem artichoke under different fertilization. Sugar Crops of China, 2009, (1): 40-43. [18] Lv S Q, Kou Y X, Yang B, et al . Phenotypic traits and photosynthetic characteristics of Jerusalem artichoke ( Helianthus tuberosus L.) in the semi-arid area. Acta Agronomica Sinica, 2014, 40(10): 1857-1864. [19] Liu Z X, Spiertz J H J, Sha J, et al . Growth and yield performance of Jerusalem artichoke clones in a semi-arid region of China. Agronomy Journal, 2012, 104(6): 1538-1546. [20] Wangsomnuk P P, Khampa S, Wangsomnuk P, et al . Genetic diversity of worldwide Jerusalem artichoke ( Helianthus tuberosus ) germplasm as revealed by RAPD markers. Genetics and Molecular Research, 2011, 10(4): 4012-4025. [21] Kou Y H, Zeng J, Liu J Q, et al . Germplasm diversity and differentiation of Helianthus tuberosus L. revealed by AFLP marker and phenotypic traits. Journal of Agricultural Science, 2014, 152: 779-789. [22] Zhao M L, Han R, Li L. ISSR marker analysis on genetic diversity of twenty-four cultivars (lines) of Helianthus tuberosus . Journal of Plant Resources and Environment, 2013, 22(4): 44-49. [23] Zhang M L. Evaluation of Cultivated Land Fertility Based on GIS-a Case Study of Yuzhong County of Gansu province[D]. Lanzhou: Lanzhou University, 2010: 23-64. [24] Pas’ko N M. Basic morphological features for distinguishing varieties of Jerusalem artichoke. Trudypo Prikladnoy Botanike, Genetiki Selektsii, 1973, 50(2): 91-101. [25] Huo C B, Li Y H. Gray correlative degree analysis relationship between yield and plant type traits in maize. Heilongjiang Agricultural Sciences, 2010, 6: 32-34. [26] Wen B B, Zhang X G, Cheng F X, et al . Preliminary research of the relevance on ophiopogon plant traits tuber yield and polysaccharide content. Journal of Anhui Agricultural Sciences, 2009, 37: 13435-13436, 13509. [27] Liang H, Zhang X G, Cheng F X, et al . Research on the relationship among the leaf number, tuber yield, flavonoids content and saponins content in erect type Ophio-pogon · jaonicus (Thunb.) Ker-Gaw. Journal of Anhui Agricultural Sciences, 2009, 37: 16361-16362, 16416. [28] Shao G Q, Li Z J, Ning T Y, et al . Effects of irrigation and urea types on ear leaf senescence after anthesis, yield and economic benefit of maize. Scientia Agricultura Sinica, 2009, 42(10): 3459-3466. [29] Lv L H, Zhao M, Zhao J R, et al . Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Scientia Agricultura Sinica, 2008, 41(9): 2624-2632. [30] Fischer R A, Rees D, Sayre K D. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate and cooler canopies. Crop Science, 1998, 38: 1467-1475. [31] Sweetlove L J, Kossmann J, Riesmeier J W. The control of source to sink carbon flux during tuber development in potato. Plant Journal, 1998, 15: 697-706. [32] Zhang M D, Chen Q, Shen S H. Characterization of photosynthesis in Jerusalem artichoke during tuberization stage. Journal of Shandong Agricultural University: Natural Science, 2010, 41: 498-502. [33] Du W L, Gao J, Hu F L, et al . Responses of drought stress on photosynthetic trait and osmotic adjustment in two maize cultivars. Acta Agronomica Sinica, 2013, 39: 530-536. [34] Soja G, Haunold E. Leaf gas exchange and tuber yield in Jerusalem artichoke ( Helianthus tuberosus L.). Field Crop Research, 1991, 26: 241-252. [35] Wang J H, Zha X Q, Luo J P, et al . Effect of drought stress on lipid peroxidation and activity of cell defense enzyme in maize seedling. Journal of Anhui Agricultural Sciences, 2006, 34: 3568-3569, 3571. [36] Zhang N H, Gao H Y, Zou Q. Effect of calcium on alleviation of decreased photosynthetic ability in salt-stressed maize leaves. Acta Phytoecologica Sinica, 2005, 29: 324-330. [37] El-Sharkawy M A, Cock J H, Held K A. A water use efficiency of cassava ii. differing sensitivity of stomata to air humidity and other warm-climate species. Crop Science, 1983, 24: 503-507. [38] Yang T, Liang Z S, Xue J Q, et al . Diversity of water use efficiency of various maize varieties. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21: 21-25. [39] Yang T, Liang Z S, Xue J Q, et al . Water consumption characteristics and water use efficiency of different maize varieties under drought stress. Agricultural Research in the Arid Areas, 2005, 23: 103-107. [40] Jia X L, Jian J L, Ma R K, et al . A study on water efficiency and its components in high-yielding winter wheat. Acta Agronomica Sinica, 1995, 25: 309-314. [41] 寇一翾, 吕世奇, 刘建全, 等. 寡糖类能源植物菊芋及其综合利用研究进展. 生命科学, 2014, 26: 1-7. [42] 贾敬墩, 马隆龙, 蒋丹平, 等. 生物质能源产业科技创新发展战略[M]. 北京: 化学工业出版社, 2014: 249-253. [43] 王平杰, 王开昌, 梅富山, 等. 郧阳山区菊芋资源利用现状及开发前景展望. 长江蔬菜, 2013, 12: 72-74. [44] 隆小华, 刘兆普, 郑青松, 等. 不同浓度海水对菊芋幼苗生长及以生理生化特征的影响. 生态学报, 2005, 29: 1881-1890. [45] 钟启文, 王怡, 王丽慧, 等. 菊芋生长发育动态及光合性能指标变化研究. 西北植物学报, 2007, 27: 1843-1848. [46] 黄增荣, 隆小华, 刘兆普, 等. KNO 3 对NaCl胁迫下两菊芋品种幼苗生长及光合能力的影响. 草业学报, 2011, 20: 82-88. [47] 孙晓娥, 刘兆普, 隆小华. 不同供镁水平对两菊芋品种幼苗生物量光合和叶绿素荧光特性的影响. 生态学杂志, 2012, 31: 823-829. [48] 陆艳, 叶慧君, 耿守保, 等. NaCl胁迫对菊芋幼苗生长和叶片光合作用参数以及体内离子分布的影响. 植物资源与环境学报, 2010, 19: 86-91. [49] 隆小华, 刘兆普. 菊芋株型在高产育种中的作用. 中国农学通报, 2010, 26(9): 263-266. [50] 高凯, 韩国栋, 徐苏铁. 不同生境条件下能源植物菊芋净光合速率和蒸腾速率的研究. 北方园艺, 2011, 3: 60-62. [51] 代晓华, 康建宏, 徐长警. 不同施肥条件下菊芋光合速率测定. 中国糖料, 2009, (1): 40-43. [52] 吕世奇, 寇一翾, 杨彬, 等. 半干旱地区菊芋品系植株表型与光合特性分析. 作物学报, 2014, 40(10): 1857-1864. [53] 赵孟良, 韩睿, 李莉. 24个菊芋品种遗传多样性的 ISSR标记分析. 植物资源与环境学报, 2013, 22(4): 44-49. [54] 张美兰. 基于GIS的耕地地力评价研究-以甘肃省榆中县为例[D]. 兰州: 兰州大学, 2010: 23-64. [55] 霍成斌, 李岩华. 玉米产量与株型性状的灰色关联度分析. 黑龙江农业科学, 2010, 6: 32-34. [56] 文便便, 张兴国, 程方叙, 等. 麦冬植株叶片·块根产量与多糖含量相关性的初步研究. 安徽农业科学, 2009, 37: 13435-13436, 13509. [57] 梁辉, 张兴国, 程方叙, 等. 直立型川麦冬叶片数·块根产量及黄酮·皂苷含量的相关性研究. 安徽农业科学, 2009, 37: 16361-16362, 16416. [58] 邵国庆, 李增嘉, 宁堂原, 等. 灌溉与尿素类型对玉米花后穗位叶衰老、产量和效益的影响. 中国农业科学, 2009, 42(10): 3459-3466. [59] 吕丽华, 赵明, 赵久然, 等. 不同施氮量下夏玉米冠层结构及光合特性的变化. 中国农业科学, 2008, 41(9): 2624-2632. [60] 张美德, 陈强, 沈世华. 菊芋块茎形成期的光合特性. 山东农业大学学报: 自然科学版, 2010, 41: 498-502. [61] 杜伟莉, 高杰, 胡富亮, 等. 玉米叶片光合作用和渗透调节对干旱胁迫的响应. 作物学报, 2013, 39: 530-536. [62] 王军辉, 查学强, 罗建平, 等. 干旱胁迫对玉米幼苗脂质过氧化作用及保护酶活性的影响. 安徽农业科学, 2006, 34: 3568-3569, 3571. [63] 张乃华, 高辉远, 邹琦. Ca 2+ 缓解NaCl胁迫引起的玉米光合能力下降的作用. 植物生态学报, 2005, 29: 324-330. [64] 杨涛, 梁宗锁, 薛吉全, 等. 不同玉米品种水分利用效率的差异性研究. 农业工程学报, 2005, 21: 21-25. [65] 杨涛, 梁宗锁, 薛吉全, 等. 干旱胁迫下不同玉米品种的耗水特性及其水分利用效率的差异. 干旱地区农业研究, 2005, 23: 103-107. [66] 贾秀领, 蹇家利, 马瑞昆, 等. 高产冬小麦水分利用效率及其组分特征分析. 作物学报, 1995, 25: 309-314. |