[1] Compiled by National Bureau of Statistics of China. China statistical yearbook 2010. http://www.stats.gov.cn/tjsj/ndsj/2011/indexch.htm, 2011-10-15. [2] Zhou Y W, Zhang Y J, Li B, et al . Microbial interactions in ruminal methanogenesis. Chinese Journal of Animal Nutrition, 2011, 23(4): 556-562. [3] Leng J, Zhang Y, Zhu R J, et al . Rumen degradation characteristics of six types of forages in the Yunnan yellow cattle. Chinese Journal of Animal Nutrition, 2011, 23(1): 53-60. [4] Cao Z J, Shi H T, Li D F, et al . Progress on nutritional evaluation of ruminant feedstuff in China. Acta Prataculturae Sinica, 2015, 24(3): 1-19. [5] Nocek J E. In situ and other methods to estimate ruminal protein and energy digestibility: a review. Journal of Dairy Science, 1988, 71(8): 2051-2069. [6] Qin D, Plattner G K, Tignor M, et al . Climate Change 2013: The Physical Science Basis[M]. Cambridge, UK, and New York: Cambridge University Press, 2014. [7] Ye L, Xiong W, Li Z, et al . Climate change impact on China food security in 2050. Agronomy for Sustainable Development, 2013, 33: 363-374. [8] Morison J I L, Lawlor D W. Interactions between increasing CO 2 concentration and temperature on plant growth. Plant, Cell & Environment, 1999, 22(6): 659-682. [9] Ludwig F, Asseng S. Climate change impacts on wheat production in a Mediterranean environment in Western Australia. Agricultural Systems, 2006, 90: 159-179. [10] Cleland E E, Chuine I, Menzel A, et al . Shifting plant phenology in response to global change. Trends In Ecology & Evolution, 2007, 22: 357-365. [11] Mitchell R, Mitchell V, Driscoll S, et al . Effects of increased CO 2 concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application. Plant, Cell & Environment, 1993, 16: 521-529. [12] Horowitz W. Official Methods of Analysis of AOAC International[M]. AOAC International, 2005. [13] Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. [14] Ørskov E R, McDonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 1979, 92(2): 499-503. [15] Zhang Y G, Li C L, Wang Y F, et al . Degradation characteristics of crude protein and dry matter in the rumen and small intestinal digestibility of commonly used feedstuff for dairy cows. Journal of Northeast Agricultural University, 2013, 44(9): 1-6. [16] He X, Wu Y, Cai M, et al . The effect of increased atmospheric temperature and CO 2 concentration during crop growth on the chemical composition and in vitro rumen fermentation characteristics of wheat straw. Journal of Animal Science and Biotechnology, 2015, 6(1): 1-8. [17] Wayne P M, Reekie E G, Bazzaz F A. Elevated CO 2 ameliorates birch response to high temperature and frost stress: implications for modeling climate-induced geographic range shifts. Oecologia, 1998, 114(3): 335-342. [18] Erice G, Irigoyen J J, Pérez P, et al . Effect of elevated CO 2 , temperature and drought on photosynthesis of nodulated alfalfa during a cutting regrowth cycle. Physiologia Plantarum, 2006, 126(3): 458-468. [19] Yu M, Zhong R Z, Zhou D W, et al . Nutrient components and rumen degradability dynamics of Chloris virgate at different growth stages. Acta Agrestia Sinica, 2014, 22(1): 175-181. [20] Chen X L, Liu Z K, Sun J, et al . Ruminal degradability characteristics of different forages in sheep. Acta Prataculturae Sinica, 2014, 23(2): 268-276. [21] González J, Faría-Mármol J, Rodríguez C A, et al . Effects of ensiling on ruminal degradability and intestinal digestibility of Italian rye-grass. Animal Feed Science and Technology, 2007, 136(1): 38-50. [22] Stalker L A, Lorenz B G, Ahern N A, et al . Inclusion of forage standards with known in vivo digestibility in in vitro procedures. Livestock Science, 2013, 151(2): 198-202. [23] Hoffman P C, Sievert S J, Shaver R D, et al . In situ dry matter, protein, and fiber degradation of perennial forages. Journal of Dairy Science, 1993, 76(9): 2632-2643. [24] Carmi A, Aharoni Y, Edelstein M, et al . Effects of irrigation and plant density on yield, composition and in vitro digestibility of a new forage sorghum variety, Tal, at two maturity stages. Animal Feed Science and Technology, 2006, 131(1): 121-133. [25] Karabulut A, Ozkan C O, Kamalak A, et al . Comparison of the nutritive value of a native Turkish forages, tumbleweed hay ( Gundelia tournefortii L.), wheat straw and alfalfa hay using in situ and in vitro measurements with sheep. Archivos Latinoamericanos de Produccion Animal, 2006, 14(3): 78-83. [26] Gesch R W, Kang I H, Gallo-Meagher M, et al . Rubisco expression in rice leaves is related to genotypic variation of photosynthesis under elevated growth CO 2 and temperature. Plant, Cell & Environment, 2003, 26(12): 1941-1950. [27] Krishnan P, Swain D K, Bhaskar B C, et al . Impact of elevated CO 2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems & Environment, 2007, 122(2): 233-242. [28] Xie L Y, Ma Z Y, Han X, et al . Impacts of CO 2 enrichment and temperature increasing on grain quality of rice. Journal of Northeast Agricultural University, 2009, 40(3): 1-6. [1] 国家统计局网站. 中国统计年鉴2010. http://www.stats.gov.cn/tjsj/ndsj/2011/indexch.htm, 200-10-15. [2] 周亚文, 张玉杰, 林波, 等. 瘤胃甲烷生成过程中微生物之间的相互关系. 动物营养学报, 2011, 23(4): 556-562. [3] 冷静, 张颖, 朱仁俊, 等. 6 种牧草在云南黄牛瘤胃中的降解特性. 动物营养学报, 2011, 23(1): 53-60. [4] 曹志军, 史海涛, 李德发, 等. 中国反刍动物饲料营养价值评定研究进展. 草业学报, 2015, 24(3): 1-19. [15] 张永根, 李春雷, 王艳菲, 等. 奶牛常用饲料干物质和蛋白质瘤胃降解特性及小肠消化率研究. 东北农业大学学报, 2013, 44(9): 1-6. [19] 余苗, 钟荣珍, 周道玮, 等. 虎尾草不同生育期营养成分及其在瘤胃的降解规律. 草地学报, 2014, 22(1): 175-181. [20] 陈晓琳, 刘志科, 孙娟, 等. 不同牧草在肉羊瘤胃中的降解特性研究. 草业学报, 2014, 23(2): 268-276. [28] 谢立勇, 马占云, 韩雪, 等. CO 2 浓度与温度增高对水稻品质的影响. 东北农业大学学报, 2009, 40(3): 1-6. |