[1] Flowers T J, Yeo A R. Breeding for salinity resistance in crop plants: where nex. Functional Plant Biology, 1995, 22(6): 875-884. [2] Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology & Environmental Safety, 2005, 60(3): 324-49. [3] Zhu J K. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2003, 53(4): 247-273. [4] Mark Tester R D. Na + tolerance and Na + transport in higher plants. Annals of Botany, 2003, 91(5): 503-527. [5] Munns R. Comparative physiology of salt and water stress. Plant Cell & Environment, 2002, 25(2): 239-250. [6] Rhodes C A, Pierce D A, Mettler I J, et al . Genetically transformed maize plants from protoplasts. Science, 1988, 240: 204-207. [7] Wang H J. Study on Salt Tolerance, Drought Resistance and Turf Use of 9 Kinds of Cold Season Turf Grass[D]. Yangling: Northwest Agriculture and Forestry University, 2014. [8] Li Y. Effects of NaCl Stress and Low Temperature Stress on the Growth and Physiological Indexes of Five Warm Season Turf Grasses[D]. Nanjing: Nanjing Agricultural University, 2013. [9] Yang H X, Xu M, Liu N, et al . Effects of two kinds of turf grass fungi on salt tolerance of species of turf grass. Pratacultural Science, 2014, 31(7): 1261-1268. [10] Dong H, Duan X C, Chang Z H. Exogenous salicylic acid salt of perennial ryegrass. Journal of Beijing Forestry University, 2015, 37(2): 128-135. [11] Sun S S. Effects of Exogenous 24-on Salt Tolerance of Perennial Ryegrass[D]. Beijing: Beijing Forestry University, 2015. [12] Zhang J W, Bao M Z, Sun Z Y. Research progress on genetic transformation of turf grass. Forestry Science Research, 2003, 16(1): 87-94. [13] Blumwald E, Poole R J. Kinetics of Ca 2+ /H + antiport in isolated tonoplast vesicles from storage tissue of beta vulgaris l. Plant Physiology, 1986, 80(3): 163-167. [14] Feki K, Quintero F J, Pardo J M, et al . Regulation of durum wheat Na + /H + exchanger Td AtSOS 1 by phosphorylation. Plant Molecular Biology, 2011, 76(6): 545-556. [15] Quintero F J, Juliana M A, Irene V, et al . Activation of the plasma membrane Na + /H + antiporter salt-overly-sensitive 1 ( AtSOS 1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6): 2611-2616. [16] Shi H, Ishitani M, Kim C, et al . The Arabidopsis thaliana salt tolerance gene AtSOS 1 encodes a putative Na + /H + antiporter. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6896-6901. [17] Liu J, Ishitani M, Halfter U, et al . The Arabidopsis thaliana AtSOS 2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7): 3730-3734. [18] Gong D, Guo Y, Jagendorf A T, et al . Biochemical characterization of the Arabidopsis protein kinase AtSOS2 that functions in salt tolerance. Plant Physiology, 2002, 130(1): 256-264. [19] Zhi Q, Spalding E P. Correction: Protection of plasma membrane K + transport by the salt overly sensitive1 Na + -H + antiporter during salinity stress. Plant Physiology, 2004, 136(1): 906-918. [20] Liu J, Zhu J K. A calcium sensor homolog required for plant salt tolerance. Science, 1998, 280: 1943-1945. [21] Halfter U, Ishitani M, Zhu J K. The Arabidopsis AtSOS 2 protein kinase physically interacts with and is activated by the calcium-binding protein AtSOS 3. Proceedings of the National Academy of Sciences, 2000, 97(7): 3735-3740. [22] Quan-Sheng Q, Yan G, Dietrich M A, et al . Regulation of AtSOS 1, a plasma membrane Na + /H + exchanger in Arabidopsis thaliana , by AtSOS 2 and AtSOS 3. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 8436-8441. [23] Rus A, Yokoi S, Sharkhuu A, et al . AtHKT1 is a salt tolerance determinant that controls Na + entey into plant roots. Proceedings of the National Academy of Science, USA, 2001, 98(24): 14150-14155. [24] Quan R, Lin H. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase AtSOS2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007, 19(4): 1415-1431. [25] Wenming D, Huixin L, She C, et al . Phosphorylation of AtSOS3-like calcium-binding proteins by their ineracting AtSOS2-like protein kinases is a common regulatory mechanism in Arabidopsi . Plant Physiology, 2011, 156(4): 2235-2243. [26] Zhang Z L, Qu W J. Plant Physiology Experiment Guide[M]. Beijing: Higher Education Press, 2003. [27] Mao X H. Genetic Engineering Improvement of Salt Tolerance of Alfalfa[D]. Ji’nan: Shandong University, 2009. [28] Zhu J K, Liu J, Xiong L. Genetic analysis of salt tolerance in Arabidopsis : Evidence for a critical role of potassium nutrition. Plant Cell, 1998, 10(7): 1181-1191. [7] 王红俊. 9种冷季型草坪草耐盐性、抗旱性及坪用性研究[D]. 杨凌: 西北农林科技大学, 2014. [8] 李源. NaCl胁迫和低温胁迫对五种暖季型草坪草生长及生理指标的影响[D]. 南京: 南京农业大学, 2013. [9] 杨海霞, 徐萌, 刘宁, 等. 丛枝菌根真菌对两种草坪草耐盐性的影响. 草业科学, 2014, 31(7): 1261-1268. [10] 董慧, 段小春, 常智慧. 外源水杨酸对多年生黑麦草耐盐性的影响. 北京林业大学学报, 2015, 37(2): 128-135. [11] 孙珊珊. 外源24-表油菜素内酯对多年生黑麦草耐盐性的影响[D]. 北京: 北京林业大学, 2015. [12] 张俊卫, 包满珠, 孙振元. 草坪草的遗传转化研究进展. 林业科学研究, 2003, 16(1): 87-94. [26] 张志良, 瞿伟菁. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2003. [27] 毛秀红. 苜蓿耐盐的基因工程改良研究[D]. 济南: 山东大学, 2009. |