[1] IPCC. Climate Change 2013: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2013. [2] Zhao D S, Wu S H, Yin Y H. Variation trends of natural vegetation net primary productivity in China under climate change scenario. Chinese Journal of Applied Ecology, 2011, 22(4): 897-904. [3] Zhou G S, Wang Y H, Jiang Y L. Global change and the northeast China transect (NECT). Earth Science Frontiers, 2002, 9(1): 198-216. [4] IPCC. Climate Change 2007: the Fourth Assessment Report[M]. Cambridge: Cambridge University Press, 2007. [5] Sheng W P. Simulation of Climate Change Impact on Grassland Ecosystem in Inner Mongolia[D]. Beijing: Chinese Academy of Agricultural Sciences, 2007. [6] Parton W J, Ojima D S, Schimel D S. Environmental change in grasslands: assessment using models. Climatic Change, 1994, 28(1/2): 111-141. [7] Xiao X, Chen D, Peng Y, et al . Observation and modeling of plant biomass of meadow steppe in Tumugi, Xingan League, Inner Mongolia, China. Vegetatio, 1996, 127(2): 191-201. [8] Bandaranayake W, Qian Y L, Parton W J, et al . Estimation of soil organic carbon changes in turfgrass systems using the CENTURY model. Agronomy Journal, 2003, 95(3): 558-563. [9] Cong R, Wang X, Xu M, et al . Evaluation of the century model using long-term fertilization trials under corn-wheat cropping systems in the typical croplands of China. Plos One, 2014, 9(4): e95142. [10] Xiao X M, Wang Y F, Chen Z Z. Dynamics of primary productivity and soil organic matter of typical steppe in the xilin river basin of Inner Mongolia and their response to climate change. Chinese Bulletin of Botany, 1996, 38(1): 45-52. [11] Yuan F, Han X G, Ge J P, et al . Net primary productivity of Leymus chinensis steppe in Xilin River basin of Inner Mongolia and its responses to global climate change. Chinese Journal of Applied Ecology, 2008, 19(10): 2168-2176. [12] Chen C, Wang J, Pan X B, et al . Validation and adaptability evaluation of grass ecosystem model CENTURY in Inner Mongolia. Acta Agrestia Sinica, 2012, 20(6): 1011-1019. [13] Mo Z H, Li Y E, Gao Q Z. Simulation on productivity of main grassland ecosystems responding to climate change. Chinese Journal of Agrometeorology, 2012, 23(4): 545-554. [14] Zhang C H, Wang M J, Zhang L, et al . Response of meadow steppe ANPP to climate change in Hulunbeir, Inner Mongolia-a simulation study. Acta Prataculturae Sinica, 2013, 22(3): 41-50. [15] Chen Z Z. Topography and climate of Xilin River Basin[M]//Research on Grassland Ecosystem No.3. Beijing: Science Press, 1988: 13-22. [16] Mo Z H. Study on NPP, R h and SOC of Northern Grassland Ecosystems Responding to Climate Change[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. [17] Zhang C H. Responses of ANPP to Climate Change in Inner Mongolia Grassland—A Simulation Based on CENTURY Model[D]. Hohhot: Inner Mongolia Agricultural University, 2013. [18] Li Q Y. Impacts of Climate Change and Grazing on Grassland in Inner Mongolia and Adaptation Strategies[D]. Beijing: China Agricultural University, 2015. [19] Parton W J, Scurlock J M O, Ojima D S, et al . Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 1993, 7(4): 785-809. [20] Parton W J, Mckeown B, Kirchner V. CENTURY Users Manual[M]. Colorado State University: NREL Publication, 1992. [21] Zhang C H, Wang M J, Wulanbater, et al . Responses of ANPP to climate change in Inner Mongolia typical steppe-a simulation study. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(6): 1229-1237. [22] He Y F, Zhao M X, Wang J X, et al . Response of grassland productivity to climate change in the farming-pasturing interlaced area of Inner Mongolia: Case study of Duolun Country. Arid Meteorology, 2008, 26(2): 84-89. [23] Zhang C C, Chen X M, Zhang Y, et al . Influence of meteorological factorson soil moisture dynamics of upland soil in Taihu Lake region. Scientia Agricultura Sinica, 2013, 46(21): 4454-4463. [24] Yang X, Wang Z, Yun X J, et al . Net primary production and forge quality of desert steppe plant communities under different grazing systems and growing seasons. Acta Prataculturae Sinica, 2015, 24(11): 1-9. [25] Sun X L, Kangsarula, Zhang Q, et al . Relationship between species diversity, productivity, climatic factors and soil nutrients in the desert stppe. Acta Prataculturae Sinica, 2015, 24(12): 10-19. [26] Xiao X M, Ojima D S, Parton W J, et al . Sensitivity of Inner Mongolia grasslands to climate change. Journal of Biogeography, 1995, 22(4/5): 643-648. [27] Cheng J Z, Li X Q, Liu Z L, et al . Spatial variation of C and N contents of plant communities in the steppe of north China: Implication for the abnormal C/N ratio in the surface soil. Geochimica, 2008, 37(3): 265-274. [28] Yang X, Tang X, Chen B D, et al . Impacts of climate change on wheat yield in china simulated by CMIP5 multi-model ensemble projections. Scientia Agricultura Sinica, 2014, 47(15): 3009-3024. [29] Ren G Y, Chu Z Y, Zhou Y Q, et al . Recent progresses in studies of regional temperature changes in China. Climatic and Environmental Research, 2005, 10(4): 701-716. [30] Tang H Y, Zhai P M, Wang Z Y. On change in mean maximum temperature, minimum temperature and diurnal range in China during 1951—2002. Climatic and Environmental Research, 2005, 10(4): 728-735. [2] 赵东升, 吴绍洪, 尹云鹤. 气候变化情景下中国自然植被净初级生产力分布. 应用生态学报, 2011, 22(4): 897-904. [3] 周广胜, 王玉辉, 蒋延玲. 全球变化与中国东北样带(NECT). 地学前缘, 2002, 9(1): 198-216. [5] 盛文萍. 气候变化对内蒙古草地生态系统影响的模拟研究[D]. 北京: 中国农业科学院, 2007. [10] 肖向明, 王义凤, 陈佐忠. 内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反应. 植物学报, 1996, 38(1): 45-52. [11] 袁飞, 韩兴国, 葛剑平, 等. 内蒙古锡林河流域羊草草原净初级生产力及其对全球气候变化的响应. 应用生态学报, 2008, 19(10): 2168-2176. [12] 陈辰, 王靖, 潘学标, 等. CENTURY模型在内蒙古草地生态系统的适用性评价. 草地学报, 2012, 20(6): 1011-1019. [13] 莫志鸿, 李玉娥, 高清竹. 主要草原生态系统生产力对气候变化响应的模拟. 中国农业气象, 2012, 23(4): 545-554. [14] 张存厚, 王明玖, 张立, 等. 呼伦贝尔草甸草原地上净初级生产力对气候变化响应的模拟. 草业学报, 2013, 22(3): 41-50. [15] 陈佐忠. 锡林河流域地形与气候概况. 草原生态系统研究(第三集)[M]. 北京: 科学出版社, 1988: 13-22. [16] 莫志鸿. 北方草原生态系统NPP、R h 和SOC对气候变化的响应[D]. 北京: 中国农业科学院, 2012. [17] 张存厚. 内蒙古草原地上净初级生产力对气候变化响应的模拟[D]. 呼和浩特: 内蒙古农业大学, 2013. [18] 李秋月. 气候变化及放牧对内蒙古草地的影响与适应对策[D]. 北京: 中国农业大学, 2015. [21] 张存厚, 王明玖, 乌兰巴特尔, 等. 内蒙古典型草原地上净初级生产力对气候变化响应的模拟. 西北植物学报, 2012, 32(6): 1229-1237. [22] 何玉斐, 赵明旭, 王金祥, 等. 内蒙古农牧交错带草地生产力对气候要素的响应——以多伦县为例. 干旱气象, 2008, 26(2): 84-89. [23] 张聪聪, 陈效民, 张勇, 等. 气象因子对太湖地区旱作农田土壤水分动态的影响. 中国农业科学, 2013, 46(21): 4454-4463. [24] 杨霞, 王珍, 运向军, 等. 不同降雨年份和放牧方式对荒漠草原初级生产力及营养动态的影响. 草业学报, 2015, 24(11): 1-9. [25] 孙小丽, 康萨如拉, 张庆, 等. 荒漠草原物种多样性、生产力与气候因子和土壤养分之间关系的研究. 草业学报, 2015, 24(12): 10-19. [27] 程建中, 李心清, 刘钟龄, 等. 中国北方草地植物群落碳、氮元素组成空间变化及其与土壤地球化学变化的关系. 地球化学, 2008, 37(3): 265-274. [28] 杨绚, 汤绪, 陈葆德, 等. 利用CMIP5多模式集合模拟气候变化对中国小麦产量的影响. 中国农业科学, 2014, 47(15): 3009-3024. [29] 任国玉, 初子莹, 周雅清, 等. 中国气温变化研究最新进展. 气候与环境研究, 2005, 10(4): 701-716. [30] 唐红玉, 翟盘茂, 王振宇. 1951-2002年中国平均最高、最低气温及日较差变化. 气候与环境研究, 2005, 10(4): 728-735. |