[1] Liu S W. Flora of Qinghai[M]. Xining: Qinghai People Press, 1999. [2] Shi Y, Ma Y L, Ma W H, et al . Large scale patterns of forage yield and quality across Chinese grasslands. Chinese Science Bulletin, 2013, 58(10): 1187-1199. [3] Liu W S, Dong M, Song Z P, et al . Genetic diversity pattern of Stipa purpurea populations in the hinterland of Qinghai-Tibet Plateau. Annals of Applied Biology, 2009, 154(1): 57-65. [4] Qpist. Vegetation of Tibet[M]. Beijing: Science Press, 1988 [5] Yang Y Q, Li X, Kong X X, et al . Transcriptome analysis reveals diversified adaptation of Stipa purpurea along a drought gradient on the Tibetan Plateau. Functional & Integrative Genomics, 2014, 15(3): 295-307. [6] Duan M J, Gao Q Z, Wan Y F, et al . Effect of grazing on community characteristics and species diversity of Stipa purpurea alpine grassland in North Tibet. Acta Ecologica Sinica, 2010, 30(14): 3892-3900. [7] Miller D J. The Tibetan Steppe. Grasslands of the World[M]. Rome: UN Food and Agriculture Organization, 2005. [8] Hu M Y, Zhang L, Luo T X, et al . Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China. Chinese Journal of Plant Ecology, 2012, 36(2): 136-143. [9] Yue P P, Lu X F, Ye R R, et al . Distribution of Stipa purpurea steppe in the Northeastern Qinghai-Xizang Plateau (China). Russian Journal of Ecology, 2011, 42(1): 50-56. [10] Li X J, Zhang X Z, Wu J S, et al . Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environmental Earth Sciences, 2011, 64(7): 1911-1919. [11] Yang S H, Li X, Yang Y Q, et al . Comparing the relationship between seed germination and temperature for Stipa species on the Tibetan Plateau. Botany, 2014, 92(12): 895-900. [12] Sun J, Peng M, Chen G C, et al . Study on community characteristics and community diversity in Stipa steppe of Qinghai Lake region. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(11): 1963-1968. [13] Han Y J, Chen G C, Zhou G Y, et al . Study on morphological response of the alpine steppes plant individuals to grazing stress. Journal of the Graduate School of the Chinese Academy of Sciences, 2006, 23(1): 118-124. [14] Wang W, Liang C Z, Liu Z L, et al . Analysis of the plant individual behavior during the degradation and restoring succession in steppe community. Chinese Journal of Plant Ecology, 2000, 24(3): 268-274. [15] Zhu J T, Jiang L, Zhang Y J, et al . Below-ground competition drives the self-thinning process of Stipa purpurea populations in northern Tibet. Journal of Vegetation Science, 2015, 26(1): 166-174. [16] Yue P P, Peng M. On the research progress of Stipa purpurea steppe in Qinghai-Tibetan Plateau. Journal of Yulin University, 2014, 24(4): 1-6. [17] Li Z D, Chen X R, Li P. Screening and identification of endophytic bacteria from Stipa purpurea . Grassland and Turf, 2011, 31(1): 8-12. [18] Nan Z B, Li C J. Roles of the grass- Neotyphodium association in pastoral agriculture systems. Acta Ecologica Sinica, 2004, 24(3): 605-616. [19] Saikkonen K, Faeth S H, Helander M, et al . Fungal endophytes: a continuum of interactions with host plants. Annual Review of Ecology and Systematics, 1998, 29: 319-343. [20] Clay K, Schardl C L. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. The American Naturalist, 2002, 160(S4): S99-S127. [21] Rodriguez R, White Jr J, Arnold A, et al . Fungal endophytes: diversity and functional roles. New Phytologist, 2009, 182(2): 314-330. [22] Schardl C L. The Epichloae, symbionts of the grass subfamily Poöideae. Annals of the Missouri Botanical Garden, 2010, 97(4): 646-665. [23] Jin W J, Li C J, Wang Z F. Research advances on diversity of grass Epichloё endophytes. Acta Prataculturae Sinica, 2015, 24(1): 168-175. [24] Kane K H. Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Environmental and Experimental Botany, 2011, 71(3): 337-344. [25] Malinowski D P, Belesky D P. Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Science, 2000, 40(4): 923-940. [26] Oberhofer M, Güsewell S, Leuchtmann A. Effects of natural hybrid and non-hybrid Epichloё endophytes on the response of Hordelymus europaeus to drought stress. New Phytologist, 2014, 201(1): 242-253. [27] Song M L, Li X Z, Saikkonen K, et al . An asexual Epichloё endophyte enhances waterlogging tolerance of Hordeum brevisubulatum . Fungal Ecology, 2015, 13: 44-52. [28] Song M L, Chai Q, Li X Z, et al . An asexual Epichloё endophyte modifies the nutrient stoichiometry of wild barley ( Hordeum brevisubulatum ) under salt stress. Plant and Soil, 2014, 387(1): 1-13. [29] Hall S L, Mcculley R L, Barney R J, et al . Does fungal endophyte infection improve tall fescue's growth response to fire and water limitation. PloS One, 2014, 9(1): e86904. [30] Omacini M, Chaneton E J, Ghersa C M, et al . Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature, 2001, 409: 78-81. [31] Nance A M. Studies on the Influence of Neotyphodium Endophytes, Below-ground Insect Herbivory and Environmental Stress on Performance of Tall Fescue and Kentucky Bluegrass[D]. Indiana: Purdue University, 2011. [32] Zhang X X, Li C J, Nan Z B, et al . Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators. Weed Research, 2012, 52(1): 70-78. [33] Shiba T, Arakawa A, Sugawara K. Effects of alkaloids from fungal endophytes in grass- Epichloё associations on survival of the sorghum plant bug ( Stenotus rubrovittatus ). Grassland Science, 2014, 61(1): 24-27. [34] Alderman S C. Survival, germination, and growth of Epichloё typhina and significance of leaf wounds and insects in infection of orchardgrass. Plant Disease, 2013, 97(3): 323-328. [35] Dobrindt L, Stroh H G, Isselstein J, et al . Infected-not infected: factors influencing the abundance of the endophyte Neotyphodium lolii in managed grasslands. Agriculture, Ecosystems & Environment, 2013, 175: 54-59. [36] Saikkonen K, Wâli P, Helander M, et al . Evolution of endophyte-plant symbioses. Trends in Plant Science, 2004, 9(6): 275-280. [37] Leuchtmann A, Bacon C W, Schardl C L, et al . Nomenclatural realignment of Neotyphodium species with genus Epichloё . Mycologia, 2014, 106(2): 202-215. [38] Craven K, Hsiau P, Leuchtmann A, et al . Multigene phylogeny of Epichloё species, fungal symbionts of grasses. Annals of the Missouri Botanical Garden, 2001, 88(1): 14-34. [39] Li C J, Nan Z B, Liu Y, et al . Methodology of endophyte detection of drunken horse grass ( Achnatherum inebrians ). Edible Fungi of China, 2008, 27: 16-19. [40] Iannone L J, Cabral D, Schardl C L, et al . Phylogenetic divergence, morphological and physiological differences distinguish a new Neotyphodium endophyte species in the grass Bromus auleticus from South America. Mycologia, 2009, 101(3): 340-351. [41] Gentile A, Rossi M S, Cabral D, et al . Origin, divergence, and phylogeny of Epichloё endophytes of native Argentine grasses. Molecular Phylogenetics and Evolution, 2005, 35(1): 196-208. [42] Hamasha H R, Von Hagen K B, Röser M. Stipa (Poaceae) and allies in the old world: molecular phylogenetics realigns genus circumscription and gives evidence on the origin of American and Australian lineages. Plant Systematics and Evolution, 2012, 298(2): 351-367. [43] White Jr J, Morgan J G. Endophyte-host associations in forage grasses VII. Acremonium chisosum , a new species isolated from Stipa eminens in Texas. Mycotaxon, 1987, 28(1): 179-189. [44] Moon C D, Guillaumin J J, Ravel C, et al . New Neotyphodium endophyte species from the grass tribes Stipeae and Meliceae . Mycologia, 2007, 99(6): 895-905. [45] Li C J, Nan Z B, Paul V H, et al . A new Neotyphodium species symbiotic with drunken horse grass ( Achnatherum inebrians ) in China. Mycotaxon, 2004, 90(1): 141-147. [46] Bruehl G W, Kaiser W J, Klein R E. An endophyte of Achnatherum inebrians , an intoxicating grass of northwest China. Mycologia, 1994, 86(6): 773-776. [47] Zhang X, Ren A Z, Wei Y K, et al . Taxonomy, diversity and origins of symbiotic endophytes of Achnatherum sibiricum in the Inner Mongolia Steppe of China. FEMS Microbiology Letters, 2009, 301(1): 12-20. [48] Zhu M J, Ren A Z, Wen W, et al . Diversity and taxonomy of endophytes from Leymus chinensis in the Inner Mongolia steppe of China. FEMS Microbiology Letters, 2013, 340(2): 135-145. [49] Li C J, Nan Z B, Li F. Biological and physiological characteristics of Neotyphodium gansuense symbiotic with Achnatherum inebrians . Microbiological Research, 2008, 163(4): 431-440. [50] Lukito Y. Investigation into the Role of PacC in Epichloё festucae Development and Symbiosis with Perennial Ryegrass[D]. Palmerston North: Massey University, 2014. [51] Fjellheim S, Rognli O A. Genetic diversity within and among Nordic Meadow fescue (Huds.) cultivars determined on the basis of AFLP markers. Crop Science, 2005, 45(5): 2081-2086. [52] Moon C D, Miles C O, Järlfors U, et al . The evolutionary origins of three new Neotyphodium endophyte species from grasses indigenous to the Southern Hemisphere. Mycologia, 2002, 94(4): 694-711. [53] Zhang X, Ren A Z, Ci H C, et al . Genetic diversity and structure of Neotyphodium species and their host Achnatherum sibiricum in a natural grass-endophyte system. Microbial Ecology, 2010, 59(4): 744-756. [54] Hamasha H, Schmidt L A, Durka W, et al . Bioclimatic regions influence genetic structure of four Jordanian Stipa species. Plant Biology, 2013, 15(5): 882-891. [55] Durka W, Nossol C, Welk E, et al . Extreme genetic depauperation and differentiation of both populations and species in Eurasian feather grasses ( Stipa ). Plant Systematics and Evolution, 2013, 299(1): 259-269. [56] Bieniek A, Pokorný P. A new find of macrofossils of feather grass ( Stipa ) in an Early Bronze Age storage pit at Vliněves, Czech Republic: local implications and possible interpretation in a Central European context. Vegetation History and Archaeobotany, 2005, 14(4): 295-302. [57] Charlton N D, Craven K D, Afkhami M E, et al . Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloё species of Bromus laevipes . FEMS Microbiology Ecology, 2014, 90(1): 276-289. [58] Moon C D, Scott B, Schardl C L, et al . The evolutionary origins of Epichloё endophytes from annual ryegrasses. Mycologia, 2000, 92(6): 1103-1118. [59] 刘尚武.青海植物志[M]. 西宁: 青海人民出版社, 1999. [60] 段敏杰, 高清竹, 万运帆, 等. 放牧对藏北紫花针茅高寒草原植物群落特征的影响. 生态学报, 2010, 30(14): 3892-3900. [61] 胡梦瑶, 张林, 罗天祥, 等. 西藏紫花针茅叶功能性状沿降水梯度的变化. 植物生态学报, 2012, 36(2): 136-143. [62] 孙菁, 彭敏, 陈桂琛, 等. 青海湖区针茅草原植物群落特征及群落多样性研究. 西北植物学报, 2003, 23(11): 1963-1968. [63] 韩友吉, 陈桂琛, 周国英, 等. 青海湖地区高寒草原植物个体特征对放牧的响应. 中国科学院研究生院学报, 2006, 23(1): 118-124. [64] 王炜, 梁存柱, 刘钟龄, 等. 草原群落退化与恢复演替中的植物个体行为分析. 植物生态学报, 2000, 24(3): 268-274. [65] 岳鹏鹏, 彭敏. 青藏高原紫花针茅草原研究进展. 榆林学院学报, 2014, 24(4): 1-6. [66] 李振东, 陈秀蓉, 李鹏. 紫花针茅内生细菌的分离与鉴定. 草原与草坪, 2011, 31(1): 8-12. [67] 南志标, 李春杰. 禾草 内生真菌共生体在草地农业系统中的作用. 生态学报, 2004, 24(3): 605-616. [68] 金文进, 李春杰, 王正凤. 禾草内生真菌的多样性及意义. 草业学报, 2015, 24(1): 168-175. [69] 李春杰, 南志标, 刘勇, 等. 醉马草内生真菌检测方法的研究. 中国食用菌, 2008, 27: 16-19. |