[1] Xu P, Hu Z Z, Zhu J Z, et al . Grassland Resource Survey and Planning[M]. Beijing: China Agriculture Press, 2000. [2] Mutanga O. Hyperspectral Remote Sensing of Tropical Grass Quality and Quantity[D]. Enschede: Wageningen University, 2004: 111. [3] Lü Y H, Fu B J. Ecological scale and scaling. Acta Ecologica Sinica, 2001, 21(12): 2096-2105. [4] He Y Z, Zhang Z Q, Guan C Y. Application and prospect of hyperspectral remote sensing technology in precision agriculture monitoring.Crop Research, 2015, (1): 96-100. [5] Cho M A, Skidmore A, Corsi F, et al . Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. International Journal of Applied Earth Observation and Geoinformation, 2007, 9(4): 414-424. [6] Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 1999, 67(3): 267-287. [7] Mutanga O, Skidmore A K. Red edge shift and biochemical content in grass canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(1): 34-42. [8] Mutanga O, Skidmore A K, van Wieren S. Discriminating tropical grass ( Cenchrus ciliaris ) canopies grown under different nitrogen treatments using spectroradiometry. ISPRS Journal of Photogrammetry and Remote Sensing, 2003, 57(4): 263-272. [9] Mutanga O, Skidmore A K, Kumar L, et al . Estimating tropical pasture quality at canopy level using band depth analysis with continuum removal in the visible domain. International Journal of Remote Sensing, 2005, 26(6): 1093-1108. [10] Mutanga O, Skidmore A K. Continuum-Removed Absorption Features Estimate Tropical Savanna Grass Quality in Situ[C].Herrsching: 3rd EARSEL Workshop on Imaging Spectroscopy, 2003: 13-16. [11] Knox N M, Skidmore A K, Prins H H T, et al . Remote sensing of forage nutrients: Combining ecological and spectral absorption feature data. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 72: 27-35. [12] Ramoelo A, Cho M A, Mathieu R, et al . Estimating grass nutrients and biomass as an indicator of rangeland (forage) quality and quantity using remote sensing in Savanna ecosystems. 9th International Conference of the African Association of Remote Sensing and the Environment[C]. Eljadida, Morocco: AARSE, 2012. [13] Xu H, Bao Y H, Bao G, et al . Typical grassland of Inner Mongolia hay biomass hyper-spectral remote sensing estimation research. Yinshan Academic Journal: Natural Science Edition, 2014, 28(4): 22-27. [14] Zhang K, Guo N, Wang R Y, et al . Hyperspectral remote sensing estimation models for aboveground fresh biomass in Gannan grassland. Pratacultural Science, 2009, 26(11): 44-50. [15] Na Q. Hyperspectral and Nutrition of Medicago sativa L and Bromus cilitus L. Correlation Research[D]. Hohhot: Inner Mongolia Agricultural University, 2010. [16] Wang X, Liu S J, Jia H F, et al . Study on the nutrition of alpine meadow based on hyperspectral data. Spectroscopy and Spectral Analysis, 2012, 32(10): 2780-2784. [17] Foulkes J N, White I A, Sparrow B D, et al . AusPlots-Rangelands Monitoring Site Stratification and Survey Methods within TERN (Terrestrial Ecosystem Research Network)[R]. Adelaide: Discussion Paper, Terrestrial Ecosystem Research Network, 2011. [18] Qian Y R, Yu J, Jia Z H, et al . Extraction and analysis of hyper-spectral data from typical desert grassland in Xinjiang. Acta Prataculturae Sinica, 2013, 22(1): 157-166. [19] Liu B, Shen W S, Li R, et al . Spectral characteristics of alpine grassland during degradation process in the source region of Yarlung Zangbo. Spectroscopy and Spectral Analysis, 2013, 33(6): 1598-1602. [20] Li J L. Remote Sensing Monitoring Grassland Degradation[M]. Beijing: Science Press, 2012: 102-154. [21] Chu X L, Yuan H F, Lu W Z. Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique. Progress In Chemistry, 2004, 16(4): 528-542. [22] Liang Y Z, Yu R Q. Analytical Chemistry Handbook (10) Stoichiometry[M]. Beijing: Chemical Industry Press, 2001. [23] Liu S S, Yi Z S. Basic Stoichiometry[M]. Beijing: Science Press, 1999. [24] Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 1964, 36(8): 1627-1639. [25] Erasmi S, Dobers E S. Potential and Limitations of Spectral Reflectance Measurements for the Estimation of the Site-specific Variability in Crops[C]. Barcelona: Proceedings of SPIE - The International Society for Optical Engineering, 2004: 42-51. [26] Zhang J, Wang M Z, Chen L, et al . Interpolation algorithm in the application of hyperspectral data. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2012, 3(3): 43-46. [27] Zhang J W. Origin 9.0 Super Learning Manual Drawing and Data Analysis Technology[M]. Beijing: Post & Telecom Press,2014. [28] Demetriades-Shah T H, Steven M D, Clark J A. High resolution derivative spectra in remote sensing. Remote Sensing of Environment, 1990, 33(1): 55-64. [29] Li M Z. Spectral Analysis Technology and Application[M]. Beijing: Science Press, 2006: 181. [30] Mei A X. Introduction to Remote Sensing[M]. Beijing: Higher Education Press, 2001. [31] Fricke T, Wachendorf M. Combining ultrasonic sward height and spectral signatures to assess the biomass of legume-grass swards. Computers and Electronics in Agriculture, 2013, 99(7): 236-247. [32] Zhang K, Guo N, Wang R Y, et al . Research on spectral reflectance characteristics for desert meadow of Northwest China.Advances In Earth Science, 2006, 21(10): 1063-1069. [33] Pu R L, Gong P. Hyperspectral Remote Sensing and Application[M]. Beijing: Higher Education Press, 2000. [34] Wang X Z, Huang J F, Li Y M, et al . The study on multi-spectral remote sensing estimation models about LAI of rice. Remote Sensing Technology and Application, 2003, 18(2): 57-65. [35] Fu Y B. Main Physiological Indicators of Hyperspectral Inversion in Alfalfa Seed Production[D]. Urumchi: Xinjiang Agricultural University, 2013. [36] Lichtenthaler H K, Gitelson A, Lang M. Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. Journal of Plant Physiology, 1996, 148(3): 483-493. [37] Clevers J, Büker C. Feasibility of the red edge index for the detection of nitrogen deficiency. Proceedings of the 5th International Colloquium-Physical Measurements and Signatures in Remote Sensing[C]. Courchevel, France: European Space Agency, 1991. [38] Sembiring H, Raun W R, Johnson G V, et al . Detection of nitrogen and phosphorus nutrient status in bermuda grass using spectral radiance. Journal of Plant Nutrition, 1998, 21(6): 1189-1206. [39] Clevers J. The use of imaging spectrometry for agricultural applications. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(5): 299-304. [40] Tang Y L. Study on the Hyperspectral Characteristics and Simulating and Estimating Models about Biophysical and Biochemical Parameters of Rice[D]. Hangzhou: Zhejiang University, 2004. [41] Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 2003, 86(4): 542-553. [42] Pan B. Hyperspectral Estimation of Apple Tree Canopy Nitrogen, Chlorophyll and LAI Status[D]. Taian: Shandong Agriculture University, 2013. [43] Xiong Y, Liu B, Yue Y M. Inversion of nitrogen content of plant leaves based on ASD and FISS. Ecology and Environmental Sciences, 2013, 22(4): 582-587. [44] Zhang X J, Li M Z. Analysis and estimation of the phosphorus content in cucumber leaf in greenhouse by spectroscopy. Spectroscopy and Spectral Analysis, 2008, 28(10): 2404-2408. [45] Grossman Y L, Ustin S L, Jacquemoud S, et al . Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sensing of Environment, 1996, 56(3): 182-193. [46] Dawson T P, Curran P J, North P R J, et al . The propagation of foliar biochemical absorption features in forest canopy reflectance: A theoretical analysis. Remote Sensing of Environment, 1999, 67(2): 147-159. [47] Ma L Y, Cui X, Feng Q S, et al . Dynamic changes of grassland vegetation coverage from 2001 to 2011 in Gannan Prefecture. Acta Prataculturae Sinica, 2014, 23(4): 1-9. [48] 许鹏, 胡自治, 朱进忠, 等. 草地资源调查规划学[M]. 北京: 中国农业出版社, 2000. [49] 吕一河, 傅伯杰. 生态学中的尺度及尺度转换方法. 生态学报, 2001, 21(12): 2096-2105. [50] 何友铸, 张振乾, 官春云. 高光谱遥感技术在精细农业监测上的应用及展望. 作物研究, 2015, (1): 96-100. [51] 胥慧, 包玉海, 包刚, 等. 内蒙古典型草原干草生物量高光谱遥感估算研究. 阴山学刊: 自然科学版, 2014, 28(4): 22-27. [52] 张凯, 郭铌, 王润元, 等. 甘南草地地上生物量的高光谱遥感估算研究. 草业科学, 2009, 26(11): 44-50. [53] 纳钦. 紫花苜蓿和缘毛雀麦高光谱与营养成分的相关性研究[D]. 呼和浩特: 内蒙古农业大学, 2010. [54] 王迅, 刘书杰, 贾海峰, 等. 基于高光谱数据的高寒草地营养状况的研究. 光谱学与光谱分析, 2012, 32(10): 2780-2784. [55] 钱育蓉, 于炯, 贾振红, 等. 新疆典型荒漠草地的高光谱特征提取和分析研究. 草业学报, 2013, 22(1): 157-166. [56] 刘波, 沈渭寿, 李儒, 等. 雅鲁藏布江源区高寒草地退化光谱响应变化研究. 光谱学与光谱分析, 2013, 33(6): 1598-1602. [57] 李建龙. 草地退化遥感监测[M]. 北京: 科学出版社, 2012: 102-154. [58] 褚小立, 袁洪福, 陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用. 化学进展, 2004, 16(4): 528-542. [59] 梁逸曾, 俞汝勤. 分析化学手册(10) 化学计量学[M]. 北京: 化工出版社, 2001. [60] 刘树深, 易忠胜. 基础化学计量学[M]. 北京: 科学出版社, 1999. [61] 张军, 王茂芝, 陈聆, 等. 插值算法在高光谱数据中的应用. 四川理工学院学报(自然科学版), 2012, 3(3): 43-46. [62] 张建伟. Origin 9.0科技绘图与数据分析超级学习手册[M]. 北京: 人民邮电出版社, 2014. [63] 李民赞. 光谱分析技术及其应用[M]. 北京: 科学出版社, 2006: 181. [64] 梅安新. 遥感导论[M]. 北京: 高等教育出版社, 2001. [65] 张凯, 郭铌, 王润元, 等. 西北荒漠草甸植被光谱反射特征研究. 地球科学进展, 2006, 21(10): 1063-1069. [66] 浦瑞良, 宫鹏. 高光谱遥感及其应用[M]. 北京: 高等教育出版社, 2000. [67] 王秀珍, 黄敬峰, 李云梅, 等. 水稻叶面积指数的多光谱遥感估算模型研究. 遥感技术与应用, 2003, 18(2): 57-65. [68] 付彦博. 制种紫花苜蓿主要生理指标高光谱反演[D]. 乌鲁木齐: 新疆农业大学, 2013. [69] 唐延林. 水稻高光谱特征及其生物理化参数模拟与估测模型研究[D]. 杭州: 浙江大学, 2004. [70] 潘蓓. 苹果树冠层氮素, 叶绿素及叶面积指数的高光谱估测[D]. 泰安: 山东农业大学, 2013. [71] 熊鹰, 刘波, 岳跃民. 基于ASD和FISS的植被叶片氮素含量反演研究. 生态环境学报, 2013, 22(4): 582-587. [72] 张喜杰, 李民赞. 基于反射光谱的温室黄瓜叶片磷素含量分析与预测. 光谱学与光谱分析, 2008, 28(10): 2404-2408. [73] 马琳雅, 崔霞, 冯琦胜, 等. 2001-2011年甘南草地植被覆盖度动态变化分析. 草业学报, 2014, 23(4): 1-9. |