欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2017, Vol. 26 ›› Issue (10): 30-45.DOI: 10.11686/cyxb2017013

• 研究论文 • 上一篇    下一篇

基于空间插值数据支持下新疆伊犁地区草地类型判别与分类研究

乔宇鑫1, 2, 朱华忠3, 5, 邵小明1, 6, 钟华平2, *, 周李磊4, 伍兆文2, 7   

  1. 1.西藏农牧学院,西藏 林芝850400;
    2.中国科学院地理科学与资源研究所陆地表层格局与模拟院重点实验室,北京100101;
    3.中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京100101;
    4.重庆大学资源及环境科学学院,重庆400044;
    5.江苏省地理信息资源开发与利用协同创新中心,江苏 南京210023;
    6.中国农业大学资源与环境学院,北京 100083;
    7.中国科学院植物研究所系统与进化植物学国家重点实验室,北京100093
  • 收稿日期:2017-01-09 出版日期:2017-10-20 发布日期:2017-10-20
  • 通讯作者: zhonghp@igsnrr.ac.cn
  • 作者简介:乔宇鑫(1993-),男,内蒙古包头人,硕士。E-mail:1076998051@qq.com
  • 基金资助:
    国家科技基础性工作专项(2012FY111900-2, 2011FY110400-3),国家科技基础条件平台-地球系统科学数据共享平台(2005DKA32300),科技基础性工作专项-科技基础性工作数据资料集成与规范化整编项目和西藏饲草产业专项(2016ZDKJZC,2017ZDKJZC)资助

Automatic classification of grassland type in Xinjiang Ili based on spatial interpolation of remote sensing and other data

QIAO Yu-Xin1, 2, ZHU Hua-Zhong3, 5, SHAO Xiao-Ming1, 6, ZHONG Hua-Ping2, *, ZHOU Li-Lei4, WU Zhao-Wen2, 7   

  1. 1. Tibet Agriculture and Animal Husbandry College, Tibet 850400, China;
    2.Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, CAS, Beijing 1001011, China;
    3.State key Laboratory of Resources and Environment Information System, Institute of Geographical Sciences and Natural Resources Researches, CAS, Beijing100101,China;
    4.College of Resource and Environmental Science, Chongqing University, Chongqing 400044, China;
    5.Jiangsu Center for Collaborative innovation in Geographic Information Resource Development and Application, Nanjing 210023, China;
    6.College of Resources and Environment, China Agricultural University, Beijing 100083, China;
    7.State Key Laboratory of Systematic and Evolutionary Botany, CAS, Beijing 100093, China
  • Received:2017-01-09 Online:2017-10-20 Published:2017-10-20

摘要: 在遥感和地理信息系统技术支持下,我国草地类型学研究有新的进展。本研究在伊犁地区草地群落高度、盖度、地上生物量、地下生物量、草地表层土壤容重、土壤全碳、土壤有机碳、土壤全氮、土壤全磷等空间分布数据的基础上,通过对不同草地类型不同指标的特征值分析,研究确定各草地类型不同指标的阀值范围,采用决策树分类法,实现新疆伊犁地区草地类型自动判别。研究结果表明,利用伊犁地区不同草地类型在群落高度、盖度、地上生物量、地下生物量、草地表层土壤容重、土壤全碳、土壤有机碳、土壤全氮、土壤全磷9个指标的特征值作为草地类型划分的依据,可以简单直观地反映各类草地的空间分布面积和分布范围,与20世纪80年代草地调查数据比较,分布趋势一致,结果可靠。同时,本研究为伊犁地区草地资源利用管理提供基础,为伊犁地区草地资源监测和信息管理平台建设提供依据,对于指导新疆伊犁地区草地畜牧业生产具有现实意义。

Abstract: With support of remote sensing and geographic information system technology, the inventory of grassland types in China has advanced rapidly. This study used a range of input data including among others grassland community height, ground cover, aboveground biomass, underground biomass, the surface soil bulk density, soil total carbon content, soil organic carbon content, soil total nitrogen content, and soil total phosphorus content. With the collected data, a spatial interpolation algorithm was applied using a Decision Tree Classifier approach to produce an automated classification and index of grassland type in Xinjiang Ili. The grassland types identified based on these nine input variables, consistently matched grassland survey data collected in the 1980s, and showed the methodology to be reliable This study provides a tool for decision makers involved in managing the utilization of grassland resources and livestock production in the Xinjiang Ili region.