[1] Redondo-Gómez E, Mateos-Naranjo L. Andrades-moreno accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator. Arthrocnemum Macrostachyum Journal of Hazardous Materials, 2010, 184: 299-307. [2] Gardea-Torresdey G, De La Rosa J R. Peralta-videa use of phytofilteration technologies to remove the heavy metals: a review. Pure and Applied Chemistry, 2004, 74: 801-803. [3] Smith S E, Read D J. Mycorrhizal Symbiosis[M]. London: Academic Press, 2008. [4] Wu S, Zhang X, Sun Y, et al . Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM-EDS, TEM-EDS and XAFS. Environmental Science & Technology, 2015, 49: 14036-14047. [5] Qiao Y H, Crowley D, Wang K, et al . Effects of biochar and arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil. Environmental Pollution, 2015, 206: 636-643. [6] Chen B D, Xiao X Y, Zhu Y G. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment, 2007, 379: 226-234. [7] Kaldorf M, Kuhn A J, Schröder W H, et al . Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Journal of Plant Physiology, 1999, 154: 718-728. [8] Andrade S A L, Gratão P L, Azevedo R A, et al . Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environmental and Experimental Botany, 2010, 68: 198-207. [9] Hernandez-Ortega H A, Alarcon A, Ferrera-Cerrato R, et al . Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. Journal of Environmental Management, 2012, 95: 319-324. [10] Ferreira P A A, Ceretta C A, Soriani H H, et al . Rhizophagus clarus and phosphate alter the physiological responses of Crotalaria juncea cultivated in soil with a high Cu level. Applied Soil Ecology, 2015, 91: 37-47. [11] Liao J P, Lin X G, Cao Z H, et al . Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere, 2003, 50: 847-853. [12] Liu L Z, Gong Z Q, Zhang Y L, et al . Growth, cadmium uptake and accumulation of maize ( Zea mays L.) under the effects of arbuscular mycorrhizal fungi. Ecotoxicology, 2014, 23: 1979-1986. [13] Feddermann N, Finlay R, Boller T, et al . Functional diversity in arbuscular mycorrhiza-the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecology, 2010, 3: 1-8. [14] Kohler J, Caravaca F, Azcon R, et al . The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Science of the Total Environment, 2015, 514: 42-48. [15] Wang X L, Yang L, Chen G H, et al . Genetic diversity among alfalfa ( Medicago sativa L.) cultivars in Northwest China. Soil and Plant Science, 2011, 61: 60-66. [16] Carrasco-Gil S, Estebaranz-Yubero M, MedelCuesta D, et al . Influence of nitrate fertilization on Hg uptake and oxidative stress parameters in alfalfa plants cultivated in a Hg-polluted soil. Environmental and Experimental Botany, 2012, 75: 16-24. [17] Liu R J, Li X L. Arbuscular Mycorrhizal Fungi and the Application[M]. Beijing: Science Press, 2000. [18] Phillips J M, Hayman D S. Improved procedures for clearing and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 1970, 55: 158-160. [19] Lu R K. Agriculture Chemistry Manual[M]. Beijing: Agriculture Press, 1982. [20] Wu F Y, Ye Z H, Wong M H. Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. Chemosphere, 2009, 76: 1258-1264. [21] Liu H, Yuan M, Tan S Y, et al . Enhancement of arbuscular mycorrhizal fungus ( Glomus versiforme ) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum . Applied Soil Ecology, 2015, 89: 44-49. [22] Lin A J, Zhang X H, Yang X J. Glomus mosseae enhances root growth and Cu and Pb acquisition of upland rice ( Oryza sativa L.) in contaminated soils. Ecotoxicology, 2014, 23: 2053-2061. [23] Lins C E L, Cavalcante U M T, Sampaio E, et al . Growth of mycorrhized seedlings of Leucaena leucocephala (Lam.) de Wit. in a copper contaminated soil. Applied Soil Ecology, 2006, 31: 181-185. [24] Wu N Y, Zhang S Z, Huang H L, et al . Enhanced dissipation of phenanthrene in spiked soil by arbuscular mycorrhizal alfalfa combined with a non-ionic surfactant amendment. Science of the Total Environment, 2008, 394: 230-236. [25] Campanelli A, Ruta C, De Mastro G, et al . The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon. Symbiosis, 2013, 59: 65-76. [26] Andrade S A L, Abreu C A, de Abreu M F, et al . Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology, 2004, 26: 123-131. [27] Chan W F, Li H, Wu F Y, et al . Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. Journal of Hazardous Materials, 2013, 262: 1116-1122. [28] Lermen C, Mohr F B M, Alberton O. Growth of Cymbopogon citratus inoculated with mycorrhizal fungi under different levels of lead. Scientia Horticulturae, 2015, 186: 239-246. [29] Chen L H, Hu X W, Yang W Q, et al . The effects of arbuscular mycorrhizal fungi on sex-specific responses to Pb pollution in Populus cathayana . Ecotoxicology and Environmental Safety, 2015, 113: 460-468. [30] Hua J F, Jiang Q, Bai J F, et al . Interactions between arbuscular mycorrhizal fungi and fungivorous nematodes on the growth and arsenic uptake of tobacco in arsenic-contaminated soils. Applied Soil Ecology, 2014, 84: 176-184. [31] Demiranda J C C, Harris P J. The effect of soil-phosphorus on the external mycelium growth of arbuscular mycorrhizal fungi during the early stages of mycorrhiza formation. Plant and Soil, 1994, 166: 271-280. [32] Li H, Ye Z H, Chan W F, et al . Can arbuscular mycorrhizal fungi improve grain yield, as uptake and tolerance of rice grown under aerobic conditions. Environmental Pollution, 2011, 159: 2537-2545. [33] Cornejo P, Meier S, Borie G, et al . Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Science of the Total Environment, 2008, 406: 154-160. [34] Bedini S, Pellegrino E, Avio L, et al . Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices . Soil Biology & Biochemistry, 2009, 41: 1491-1496. [35] Amna A N, Masood S, Mukhtar T, et al . Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices . Environmental Monitoring and Assessment, 2015, 187: 311. [36] Lesueur D, Duponnois R. Relations between rhizobial nodulation and root colonization of Acacia crassicarpa provenances by an arbuscular mycorrhizal fungus, Glomus intraradices Schenk and Smith or an ectomycorrhizal fungus, Pisolithus tinctorius Coker & Couch. Annals of Forest Science, 2005, 62: 467-474. [37] Mortimer P E, Perez-Fernandez M A, Valentine A J. The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris . Soil Biology & Biochemistry, 2008, 40: 1019-1027. [38] Wu F Y, Bi Y L, Wong M H. Dual inoculation with an arbuscular mycorrhizal fungus and Rhizobium to facilitate the growth of alfalfa on coal mine substrates. Journal of Plant Nutrition, 2009, 32: 755-771. [39] Baslam M, Erice G, Goicoechea N. Impact of arbuscular mycorrhizal fungi (AMF) and atmospheric CO 2 concentration on the biomass production and partitioning in the forage legume alfalfa. Symbiosis, 2012, 58: 171-181. [40] Bender S F, Plantenga F, Neftel A, et al . Symbiotic relationships between soil fungi and plants reduce N 2 O emissions from soil. International Society for Microbial Ecology Journal, 2014, 8: 1336-1345. [41] Cheng L, Booker F L, Tu C, et al . Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO 2 . Science, 2012, 337: 1084-1087. [42] Shen H, Christie P, Li X. Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize ( Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environmental Geochemistry and Health, 2006, 28: 111-119. |