[1] Penner G B, Steele M A, Aschenbach J R, et al . Ruminant nutrition symposium: Molecular adaptation of ruminal epithelia to highly fermentable diets. Journal of Animal Science, 2011, 89(4): 1108-1119. [2] Penner G B, Oba M, Gabel G, et al . A single mild episode of subacute ruminal acidosis does not affect ruminal barrier function in the short term. Journal of Dairy Science, 2010, 93(10): 4838-4845. [3] Hu H L. Study on the Nutritional and Physiological Mechanism of Subacute Ruminal Acidosis in Dairy Goats[D]. Huhhot: Inner Mongolia Agricultural University, 2008. 胡红莲. 奶山羊亚急性瘤胃酸中毒营养生理机制的研究[D]. 呼和浩特: 内蒙古农业大学, 2008. [4] Liu L, Wang J Q, Liu S J, et al . Subacute ruminal acidosis in dairy herds. China Animal Husbandry & Veterinary Medicine, 2008, 35(5): 72-75. 刘亮, 王加启, 刘仕军, 等. 奶牛亚急性瘤胃酸中毒研究进展. 中国畜牧兽医, 2008, 35(5): 72-75. [5] Penner G B, Aschenbach J R, Gabel G, et al . Epithelial capacity for apical uptake of short chain fatty acids is a key determinant for intraruminal ph and the susceptibility to subacute ruminal acidosis in sheep. Journal of Nutrition, 2009, 139(9): 1714-1720. [6] Kuzinski J, Zitnan R, Viergutz T, et al . Altered Na + /K + -ATPase expression plays a role in rumen epithelium adaptation in sheep fed hay ad libitum or a mixed hay/concentrate diet. Veterinarni Medicina, 2011, 56(1): 35-47. [7] Shen Z, Seyfert H M, Lohrke B, et al . An energy-rich diet causes rumen papillae proliferation associated with more IGF type 1 receptors and increased plasma IGF-1 concentrations in young goats. Journal of Nutrition, 2004, 134(1): 11-17. [8] Lu J Y. Effect of Dietary Energy Intake on Growth of Rumen Epithelium and Its Underlying Mechanism in Goats[D]. Nanjing: Nanjing Agricultural University, 2012. 卢劲晔. 日粮能量水平对山羊瘤胃上皮生长的影响及机理研究[D]. 南京: 南京农业大学, 2012. [9] Metzler-Zebeli B U, Hollmann M, Sabitzer S, et al . Epithelial response to high grain diets involves alteration in nutrient transporter and Na + /K + -ATPase mRNA expression in rumen and colon of goats. Journal of Animal Science, 2013, 91(9): 4256-4266. [10] Qin W L. Determination of rumen volatile fatty acids by means of gas chromatography. Journal of Nanjing Agricultural College, 1982, 4: 110-116. 秦为琳. 应用气相色谱测定瘤胃挥发性脂肪酸方法的研究改进. 南京农业大学学报, 1982, 4: 110-116. [11] Odongo N E, AlZahal O, Lindinger M I, et al . Effects of mild heat stress and grain challenge on acid-base balance and rumen tissue histology in lambs. Journal of Animal Science, 2006, 84(2): 447-455. [12] Graham C, Simmons N L. Functional organization of the bovine rumen epithelium. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 2005, 288(1): 173-181. [13] Chomczynski P, Sacchi N. Single-step method of rna isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 1987, 162(1): 156-159. [14] Naeem A, Drackley J K, Stamey J, et al . Role of metabolic and cellular proliferation genes in ruminal development in response to enhanced plane of nutrition in neonatal holstein calves. Journal of Dairy Science, 2012, 95(4): 1807-1820. [15] Wang A, Gu Z, Heid B, et al . Identification and characterization of the bovine g protein-coupled receptor GPR41 and GPR43 genes. Journal of Dairy Science, 2009, 92(6): 2696-2705. [16] Dirksen G, Liebich H, Mayer E. Adaptive changes of the ruminal mucosa and their functional and clinical significance. Bovine Practitioner, 1985, 20: 116-120. [17] Bannink A, France J, Lopez S, et al . Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Animal Feed Science and Technology, 2008, 143(1): 3-26. [18] Kirat D, Masuoka J, Hayashi H, et al . Monocarboxylate transporter 1 (MCT1) plays a direct role in short-chain fatty acids absorption in caprine rumen. Journal of Physiology, 2006, 576(2): 635-647. [19] Kirat D, Matsuda Y, Yamashiki N, et al . Expression, cellular localization, and functional role of monocarboxylate transporter 4 (MCT4) in the gastrointestinal tract of ruminants. Gene, 2007, 391(1-2): 140-149. [20] Liu J H, Xu T T, Liu Y J, et al . A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 2013, 305(3): 232-241. [21] Aschenbach J R, Penner G B, Stumpff F, et al . Ruminant nutrition symposium: Role of fermentation acid absorption in the regulation of ruminal pH. Journal of Animal Science, 2011, 89(4): 1092-1107. [22] Albrecht E, Kolisek M, Viergutz T, et al . Molecular identification, immunolocalization, and functional activity of a vacuolar-type H(+)-ATPase in bovine rumen epithelium. Journal of Comparative Physiology B, 2008, 178(3): 285-295. |