[1] Barbi F, Prudent E, Vallon L, et al. Tree species select diverse soil fungal communities expressing different sets of lignocellulolytic enzyme-encoding genes. Soil Biology and Biochemistry, 2016, 100(3): 149-159. [2] Wang X C, Li G F, An S, et al. Effects of nitrogen forms on rhizosphere microorganisms and soil enzyme activity for nitrogen transform of wheat cultivar during elongation and grain filling stage. Journal of Soil and Water Conservation, 2010, 24(6): 204-207, 245. 王小纯, 李高飞, 安帅, 等. 氮素形态对中后期小麦根际土壤氮转化微生物及酶活性的影响. 水土保持学报, 2010, 24(6): 204-207, 245. [3] Wang Z Q, Chaolunbagen, Chai J H. Soil evaporation in artificially re-vegetated sandy areas of Hunshandake. Chinese Journal of Eco-Agriculture, 2007, 15(6): 44-47. 王志强, 朝伦巴根, 柴建华. 浑善达克沙地人工植被覆盖下土壤蒸发的模拟研究. 中国生态农业学报, 2007, 15(6): 44-47. [4] Ju X T. The concept and meanings of nitrogen fertilizer availability ratio discussing misunderstanding of traditional nitrogen use efficiency. Acta Pedologica Sinica, 2014, 51(5): 921-933. 巨晓棠. 氮肥有效率的概念及意义—兼论对传统氮肥利用率的理解误区. 土壤学报, 2014, 51(5): 921-933. [5] Fierer N, Mcculley R L. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science, 2013, 342: 621-624. [6] Zhao M M, Zhao X M, Xininigen, et al. Advances in nirK and nirS type denitrifying microbes of agricultural soils. Advances in Microbiology, 2018, 7(2): 65-72. 赵明明, 赵鑫盟, 希尼尼根, 等. 农田土壤nirK和nirS型反硝化微生物的研究进展. 微生物前沿, 2018, 7(2): 65-72. [7] Huang S H, Lü J. Research progress in nitrous oxide emissions from agricultural soil. Chinese Journal of Soil Science, 2004, 35(4): 516-522. 黄树辉, 吕军. 农田土壤N2O排放研究进展. 土壤通报, 2004, 35(4): 516-522. [8] Xu Y B, Cai Z C. Denitrification characteristics of subtropical soils in China affected by soil parent material and land use. European. Journal of Soil Science, 2007, 58(6): 1293-1303. [9] Bergsma T T, Robertson G P, Ostrom N E. Influence of soil moisture and land use history on denitrification end products. Journal of Environmental Quality, 2002, 31(3): 711-717. [10] Hwang S J, Hanaki K. Effects of oxygen concentration and moisture content of refuse on nitrification, denitrification and nitrous oxide production. Bioresource Technology, 2000, 71(2): 159-165. [11] Smalla K, Oros-Sichler M, Milling A, et al. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified16S rRNA gene fragments: Do the different methods provide similar results. Journal of Microbiological Methods, 2007, 69(3): 470-479. [12] Kim S, Dale B E. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production. Environmental Science &Technology, 2008, 42(16): 6028-6033. [13] Asing J, Saggar S, Singh J, et al. Assessment of nitrogen losses from urea and an organic manure with and without nitrification inhibitor dicyandiamide, applied to lettuce under glasshouse conditions. Australian Journal of Soil Research, 2008, 46: 535-541. [14] Gregorich E, Rochette P, Vandenbygaart A, et al. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil and Tillage Research, 2005, 83(1): 53-72. [15] Dobbie K E, Smith K A. Nitrous oxide emission factors for agricultural soils in Great Britain: The impact of soil water-filled pore space and other controlling variables. Global Change Biology, 2003, 9(2): 204-218. [16] Enwall K, Philippot L, Hallin S. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Applied and Environmental Microbiology, 2005, 71(12): 8335-8343. [17] Saggar S, Jha N, Deslippe J, et al. Denitrification and N2O: N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Science of the Total Environment, 2013, 465(12): 173-195. [18] Philippot L. Denitrifying genes in bacterial and archaeal genomes. Biochimica et Biophysica Acta, 2002, 1577(3): 355-376. [19] Cabello, Roldán M, Moreno-Vivián. Nitrate reduction and the nitrogen cycle in archaea. Microbiology, 2004, 150(11): 3527-3546. [20] Shapleigh J P. The denitrifying prokaryotes. The Prokaryotes, 2006, 3(2): 769-792. [21] Liang L H, Zuo J W. Denitrifying functional genes—The molecular marker for detection of denitrifying community structure. Microbiology, 2009, 36(4): 627-633. 梁丽华, 左剑恶. 反硝化功能基因-检测反硝化菌种群结构的分子标记. 微生物学通报, 2009, 36(4): 627-633. [22] Shoun H, Kim D H, Uchiyama H, et al. Denitrification by fungi. FEMS Microbiology Letters, 1992, 94(3): 277-281. [23] Laughlin R J, Stevens R J. Evidence for fungal dominance of denitrification and codenitrification in a grassland soil. Soil Science Society of America Journal, 2002, 66(5): 1540-1548. [24] Masahito H, Kanako T, Masanori S. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Science and Plant Nutrition, 2008, 54(1): 33-45. [25] Prendergast-Miller M T, Baggs E M, Johnson D. Nitrous oxide production by the ectomycorrhizal fungi Paxillus involutus and Tylospora fibrillose. FEMS Microbiology Letters, 2011, 316(1): 31-35. [26] Thamdrup B. New pathways and processes in the global nitrogen cycle. Annual Review of Ecology, Evolution and Systematics, 2012, 43(1): 407-428. [27] Galloway J N, Dentener D G, Capone E W. Nitrogen cycles: Past, present and future. Biogeochemistry, 2004, 70(2): 153-226. [28] Philippot L, Hallin S. Finding the missing link between diversity and activity using denitrifying bacteria as a model functional community. Current Opinion in Microbiology, 2005, 8(3): 234-239. [29] Guo L Y, Shi F, Yang L Y. Advances in functional genes and molecular ecology in denitrifiers. Microbiology China, 2011, 38(4): 583-590. 郭丽芸, 时飞, 杨柳燕. 反硝化菌功能基因及其分子生态学研究进展. 微生物学通报, 2011, 38(4): 583-590. [30] Li S Q, Bu T Y, Li S X. Ammonium nitrification and fixation by clay minerals in calcareous soil. Agricultural Research in the Arid Areas, 1993, (1): 99-107. 李世清, 卜彤英, 李生秀. 石灰性土壤中$NH_4^{+}$-N的硝化与$NH_4^{+}$-N的粘土矿物固定. 干旱地区农业研究, 1993, (1): 99-107. [31] Li F D, Hu Z J. Microbiology (6th Edition). Beijing: China Agriculture Press, 2002. 李阜棣, 胡正嘉. 微生物学(第六版). 北京: 中国农业出版社, 2002. [32] Wang Y, Hu C S. Research advances on community structure and function of denitrifiers. Chinese Journal of Eco-Agriculture, 2010, 18(6): 1378-1384. 王莹, 胡春胜. 环境中的反硝化微生物种群结构和功能研究进展. 中国生态农业学报, 2010, 18(6): 1378-1384. [33] Yang Y D, Zhao J, Jiang Y, et al. Response of bacteria harboring nirS and nirK genes to different N fertilization rates in an alkaline northern Chinese soil. European Journal of Soil Biology, 2017, 82: 1-9. [34] Yang Y D, Song R K, Ma J Y, et al. Effects of long-term different N and P fertilization rates on the abundance of bacteria nitrifying and denitrifying microorganisms in soil. Journal of China Agricultural University, 2018, 23(9): 81-88. 杨亚东, 宋润科, 马俊永, 等. 长期氮磷不同施用量对土壤细菌、硝化与反硝化微生物数量的影响. 中国农业大学学报, 2018, 23(9): 81-88. [35] Yang L Q. N2O production processes and the abundance and expression of relative functional genes in calcareous fluvo aquic soil. Beijing: China Agricultural University, 2017. 杨柳青. 石灰性潮土N2O产生过程及相关功能基因丰度和表达. 北京: 中国农业大学, 2017. [36] Liu X R, Zhang X, Zhang Q W, et al. Effects of biochar and straw return on CO2 and N2O emissions from farmland in the North China Plain. Acta Ecologica Sinica, 2017, 30(20): 6700-6711. 刘杏认, 张星, 张晴雯, 等. 施用生物炭和秸秆还田对华北农田CO2、N2O排放的影响. 生态学报, 2017, 37(20): 6700-6711. [37] Yu K W, Chen G X, Sten S, et al. Dynamics of denitrification potential in a Danish forest soil. Chinese Journal of Applied Ecology, 1998, 9(2): 163-167. 于克伟, 陈冠雄, Sten Struwe, 等. 丹麦森林土壤反硝化作用的动力学分析. 应用生态学报, 1998, 9(2): 163-167. [38] Song Y N, Lin Z M, Lin Y. Response of denitrifying bacteria community structure and abundance to nitrogen in paddy fields. Chinese Journal of Eco-Agriculture, 2012, 20(1): 7-12. 宋亚娜, 林智敏, 林艳. 氮肥对稻田土壤反硝化细菌群落结构和丰度的影响. 中国生态农业学报, 2012, 20(1): 7-12. [39] Yu S, Li Z G. Biological nitrification denitrification and nitrogen loss in rice field ecosystem. Chinese Journal of Applied Ecology, 1999, 10(5): 630-634. 俞慎, 李振高. 稻田生态系统生物硝化-反硝化作用与氮素损失. 应用生态学报, 1999, 10(5): 630-634. [40] Luo X Q, Chen Z, Hu R G, et al. Effect of long-term fertilization on the diversity of nitrite reductase genes (nirK and nirS) in paddy soil. Acta Scientiae Circumstantiae, 2010, 31(2): 423-430. 罗希茜, 陈哲, 胡荣桂, 等. 长期施用氮肥对水稻土亚硝酸还原酶基因多样性的影响. 环境科学, 2010, 31(2): 423-430. [41] Zhu J, Liu H, Wu B K, et al. Effects of integrated rice-crayfish farming system on community structure and diversity of nirK denitrification microbe in paddy soils. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1324-1332. 朱杰, 刘海, 吴邦魁, 等. 稻虾共作对稻田土壤nirK反硝化微生物群落结构和多样性的影响. 中国生态农业学报, 2018, 26(9): 1324-1332. [42] Liu Q R, Qi L H, Hu X, et al. Effects of nitrogen fertilization on nitrification and denitrification in Phyllostachys edulis forests. Journal of Nanjing Forestry University, 2017, 41(1): 82-88. 刘琦蕊, 漆良华, 胡璇, 等. 氮肥对毛竹林土壤硝化和反硝化作用的影响. 南京林业大学学报(自然科学版), 2017, 41(1): 82-88. [43] Jin Z J, Huang H T, Liu J, et al. Effect of Cr, Cu and Ni on distributions of nitrifying and denitrifying bacteria communities in a constructed wetland. Ecology and Environmental Sciences, 2013, 22(12): 1936-1944. 靳振江, 黄海涛, 刘杰, 等. 铬、铜和镍对人工湿地硝化细菌与反硝化细菌群落结构分布的影响. 生态环境学报, 2013, 22(12): 1936-1944. [44] Sun Z G, Liu J S. Nitrification-denitrification and its affecting factors in wetland soil—A Review. Chinese Journal of Soil Science, 2008, 39(6): 1462-1467. 孙志高, 刘景双. 湿地土壤的硝化-反硝化作用及影响因素. 土壤通报, 2008, 39(6): 1462-1467. [45] Zhang Z J, Zhu B, Xiang H Y. Effect of nitrogen fertilizer for wheat on N2O emission and denitrification in purple soil. Journal of Agro-Environment Science, 2010, 29(10): 2033-2040. 张中杰, 朱波, 项红艳. 氮肥施用对西南地区紫色土冬小麦N2O释放和反硝化作用的影响. 农业环境科学学报, 2010, 29(10): 2033-2040. [46] Mo X, Ma W, Shi R, et al. Diversity of nirS-type denitrifying bacteria under different nitrogen fertilizer management in wheat soil. Acta Microbiologica Sinica, 2009, 49(9): 1203-1208. 莫旭华, 麻威, 史荣, 等. 氮肥对小麦田土壤nirS型硝化细菌多样性的影响. 微生物学报, 2009, 49(9): 1203-1208. [47] Chang H N, Wang C L, Zhu C, et al. Variation of rhizodeposits under monocropping of tomato and its relationship with root-knot nematode. Acta Pedologica Sinica, 2020, 57(3): 750-759. 常海娜, 王春兰, 朱晨, 等. 不同连作年限番茄根系淀积物的变化及其与根结线虫的关系. 土壤学报, 2020, 57(3): 750-759. [48] Bao S D. Soil and agro-chemistry analysis (3rd edition). Beijing: China Agriculture Press, 2000. 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. [49] Li Z G, Luo Y M, Teng Y. Soil and environmental microbiology research method. Beijing: Science Press, 2008. 李振高, 骆永明, 滕应. 土壤与环境微生物研究法. 北京: 科学出版社, 2008. [50] Kou W B, Huang Z Y, Zhang J, et al. Bacterial community structure and composition in Lake Poyang: A case study in the Songmenshan region, China. Acta Ecologica Sinica, 2015, 35(23): 7608-7614. 寇文伯, 黄正云, 张杰, 等. 鄱阳湖湖泊细菌群落组成及结构:以松门山为例. 生态学报, 2015, 35(23): 7608-7614. [51] Nacke H, Thurmer A, Wollherr A, et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One, 2011, 6(2): e17000. [52] Gao S C, Guan D W, Ma M C, et al. Effects of fertilization on bacterial community under the condition of continuous soybean monoculture in black soil in northeast China. Scientia Agricultura Sinica, 2017, 50(7): 1271-1281. 高圣超, 关大伟, 马鸣超, 等. 大豆连作条件下施肥对东北黑土细菌群落的影响. 中国农业科学, 2017, 50(7): 1271-1281. [53] Spain A M, Krumholz L R, Elshahed M S, et al. Abundance composition diversity and novelty of soil Proteobacteria. The ISME Journal, 2009, 3(8): 992-1000. [54] Jones R T, Robeson M S, Lauber C L, et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME Journal, 2009, 3(4): 442-453. [55] Männistö M K, Tiirola, M. Bacterial communities in arctic fjelds of finnish lapland are stable but highly pH-dependent. FEMS Microbiology Ecology, 2010, 59(2): 452-465. [56] Griffiths R I, Thomson B C, James P, et al. The bacterial biogeography of British soils. Environmental Microbiology, 2011, 13(6): 1642-1654. [57] Lauber C L, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120. [58] Rousk J, Bååth E, Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 2010, 4(10): 1340-1351. [59] Srinandan C S, Shah M, Patel B, et al. Assessment of denitrifying bacterial composition in activated sludge. Bioresource Technology, 2011, 102(20): 9481-9489. [60] Li C, Yang J, Wang X, et al. Removal of nitrogen by heterotrophic nitrification aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24. Bioresource Technology, 2015, 182: 18-25. [61] He T, Li Z, Sun Q, et al. Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion. Bioresource Technology, 2016, 200(1): 493-499. [62] Gumaelius L, Magnusson G, Pettersson B, et al. Comamonas denitrificans sp. nov. an efficient denitrifying bacterium isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(3): 999-1006. [63] Zhou J. Influence of long term nitrogen fertilization on microorganisms and major N-cycling related communities in black soil in northeast China. Beijing: China Agricultural University, 2017. 周晶. 不同施氮量对东北黑土微生物及主要氮循环菌群的影响. 北京: 中国农业大学, 2017. [64] Yu H L. Effect of nitrogen application on composition characters of soil microbial communities. Changchung: Jilin Agricultural University, 2016. 于海玲. 施氮量对土壤微生物群落组成特征的影响研究. 长春: 吉林农业大学, 2016. [65] Wang C, Liu D, Bai E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry, 2018, 120: 126-133. [66] Zhong Y Q, Yan W M, Shang Z P. Impact of long-term N additions upon coupling between soil microbial community structure and activity and nutrient-use efficiencies. Soil Biology & Biochemistry, 2015, 91: 151-159. [67] Zhang J, Dong X C, Zhang H, et al. Effect of long-term nitrogen application on bacterial community structure of potato soil in semi-arid area. Journal of Gansu Agricultural University, 2019, 54(1): 30-41. 张健, 董星晨, 张鹤, 等. 长期施氮对马铃薯田土壤剖面硝态氮积累及细菌群落结构的影响. 甘肃农业大学学报, 2019, 54(1): 30-41. [68] De Klein C A M, Van Logtestijn R S P. Denitrification in the top soil of managed grasslands in the Netherlands in relation to soil type and fertilizer level. Plant and Soil, 1994, 163(1): 33-44. [69] Wang X H, Guo G X, Zheng R L, et al. Effect of biochar on abundance of N-related functional microbial communities in degraded greenhouse soil. Acta Pedologica Sinica, 2013, 50(3): 624-631. 王晓辉, 郭光霞, 郑瑞伦, 等. 生物炭对设施退化土壤氮相关功能微生物群落丰度的影响. 土壤学报, 2013, 50(3): 624-631. [70] Saleh-Lakha S, Shannon K E, Henderson S L, et al. Effect of pH and temperature on denitrification gene expression and activity in Pseudomonas mandelii. Appllied and Environmental Microbiology, 2009, 75(12): 3903-3911. [71] Zeng X B, Wang Y N, Wang Y Z, et al. Effects of different fertilization regimes on abundance and community structure of the nirK type denitrifying bacteria in greenhouse vegetable soils. Chinese Journal of Applied Ecology, 2014, 25(2): 505-514. 曾希柏, 王亚男, 王玉忠, 等. 施肥对设施菜地nirK型反硝化细菌群落结构和丰度的影响. 应用生态学报, 2014, 25(2): 505-514. |