Reference:[1] Schlegel A J, Havlin J L. Green fallow for the central Great Plains[J]. Agronomy Journal, 1997, 89(5): 762-767.[2] Sparrow S D, Cochran V L, Sparrow E B. Herbage yield and nitrogen accumulation by seven legume crops on acid and neutral soils in a subarctic environment[J]. Canadian Journal of Plant Science, 1993, 73(4): 1037-1045.[3] Smith W, Gorz H. Sweetclover improvement[J]. Advances in Agronomy, 1965, 17: 163-231.[4] Nicotra M, Meli R, Savoca F. Efficacy of Melilotus officinalis (L.) pallas in cellulitis treatment[J]. Bollettino Accademia Gioenia Scienze Naturali, 2009, 42: 20-28.[5] Wu C X, Guo X X, Li Z H, et al. Feasibility of using the allelopathic potential of yellow sweet clover for weed control[J]. Allelopathy Journal, 2010, 25(1): 173-183.[6] Moyer J, Blackshaw R, Huang H. Effect of sweetclover cultivars and management practices on following weed infestations and wheat yield[J]. Canadian Journal of Plant Science, 2007, 87(4): 973-983.[7] Blackshaw R E, Moyer J R, Doram R C, et al. Yellow sweetclover, green manure, and its residues effectively suppress weeds during fallow[J]. Weed Science, 2001, 49(3): 406-413.[8] Sampietro D A, Catalan C A, Vattuone M A. Isolation, Identification and Characterization of Allelochemicals/Natural Products[M]. Boca Raton: Science Publishers, 2009.[9] Kelton J, Price A J, Mosjidis J. Allelopathic weed suppression through the use of cover crops[J]. Weed Control, 2012, 2: 978-953.[10] Stoker J, Bellis D. The isolation and identification of bound coumarin from Melilotus album[J]. Canadian Journal of Biochemistry and Physiology, 1962, 40(12): 1763-1768.[11] Kang S S, Lee Y S, Lee E B. Saponins and flavonoid glycosides from yellow sweetclover[J]. Archives of Pharmacal Research, 1988, 11(3): 197-202.[12] Macías F A, Simonet A M, Galindo J C. Bioactive steroids and triterpenes from Melilotus messanensis and their allelopathic potential[J]. Journal of Chemical Ecology, 1998, 23(7): 1781-1803.[13] Macías F A, Simonet A M, Galindo J C, et al. Bioactive phenolics and polar compounds from Melilotus messanensis[J]. Phytochemistry, 1999, 50(1): 35-46.[14] Wu C X, Li Z H, Shen Y X. Quantification and allelopathy potential of phenolic acids in aqueous extracts of Legumes[J]. Acta Agrestia Sinica, 2007, 15(5): 401-406.[15] Takemura T, Kamo T, Sakuno E, et al. Discovery of coumarin as the predominant allelochemical in Gliricidia sepium[J]. Journal of Tropical Forest Science, 2013, 25(2): 268-272.[16] Bertin C, Paul R N, Duke S O, et al. Laboratory assessment of the allelopathic effects of fine leaf fescues[J]. Journal of Chemical Ecology, 2003, 29(8): 1919-1937.[17] Chung I M, Kim K H, Ahn J K, et al. Comparison of allelopathic potential of rice leaves, straw, and hull extracts on barnyardgrass[J]. Agronomy Journal, 2003, 95(4): 1063-1070.[18] Kato-Noguchi H, Yamamoto M, Tamura K, et al. Isolation and identification of potent allelopathic substances in rattail fescue[J]. Plant Growth Regulation, 2010, 60(2): 127-131.[19] Bich T, Ohno O, Suenaga K, et al. Isolation and identification of an allelopathic substance from duckweed (Lemna minor L.)[J]. Allelopathy Journal, 2013, 32(2): 213-221.[20] Salam A, Kato Noguchi H. Isolation and characterisation of two potent growth inhibitory substances from aqueous extract of Bangladeshi rice cultivar BR17[J]. Allelopathy Journal, 2011, 27(2): 207-216.[21] Yang G Q. Main allelochemicals isolated and identified from the leachates of Ageratina adenophora Sprengel(Asteraceae) and their action mechanisms on upland rice(Oryza sativa) seedling[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006.[22] Eljarrat E, Barceló D. Sample handling and analysis of allelochemical compounds in plants[J]. TrAC Trends in Analytical Chemistry, 2001, 20(10): 584-590.[23] El Shahawy T A, Abdelhamid M T. Potential allelopathic effect of six phaseolus vulgaris recombinant inbred lines for weed control[J]. Australian Journal of Basic&Applied Sciences, 2013, 7(1): 462-467. [24] Razavi S M. Plant coumarins as allelopathic agents[J]. International Journal of Biological Chemistry, 2011, 5: 86-90.[25] Sharma R, Negi D S, Shiu W K, et al. Characterization of an insecticidal coumarin from Boenninghausenia albiflora[J]. Phytotherapy Research, 2006, 20(7): 607-609.[26] Brooker N, Kuzimichev Y, Laas J, et al. Evaluation of coumarin derivatives as anti-fungal agents against soil borne fungal pathogens[J]. Communications in Agricultural and Applied Biological Sciences, 2006, 72(4): 785-793.[27] Ascari J, Takahashi J A, Boaventura M A D. Phytochemical and biological investigations of Caryocar brasiliense Camb[J]. Boletín Latinoamericanoy del Caribe de Plantas Medicinalesy Aromáticas, 2010, 9(1): 20-28.[28] Hong Y, Hu H, Sakoda A, et al. Straw preservation effects of Arundo donax L. on its allelopathic activity to toxic and bloom-forming Microcystis aeruginosa[J]. Water Science & Technology, 2011, 63(8): 1566-1573.[29] Qiao M, Xiao J, Yin H, et al. Analysis of the phenolic compounds in root exudates produced by a subalpine coniferous species as responses to experimental warming and nitrogen fertilisation[J]. Chemistry and Ecology, 2014, 30(6): 1-11. 参考文献:[1] Schlegel A J, Havlin J L. Green fallow for the central Great Plains[J]. Agronomy Journal, 1997, 89(5): 762-767.[2] Sparrow S D, Cochran V L, Sparrow E B. Herbage yield and nitrogen accumulation by seven legume crops on acid and neutral soils in a subarctic environment[J]. Canadian Journal of Plant Science, 1993, 73(4): 1037-1045.[3] Smith W, Gorz H. Sweetclover improvement[J]. Advances in Agronomy, 1965, 17: 163-231.[4] Nicotra M, Meli R, Savoca F. Efficacy of Melilotus officinalis (L.) pallas in cellulitis treatment[J]. Bollettino Accademia Gioenia Scienze Naturali, 2009, 42: 20-28.[5] Wu C X, Guo X X, Li Z H, et al. Feasibility of using the allelopathic potential of yellow sweet clover for weed control[J]. Allelopathy Journal, 2010, 25(1): 173-183.[6] Moyer J, Blackshaw R, Huang H. Effect of sweetclover cultivars and management practices on following weed infestations and wheat yield[J]. Canadian Journal of Plant Science, 2007, 87(4): 973-983.[7] Blackshaw R E, Moyer J R, Doram R C, et al. Yellow sweetclover, green manure, and its residues effectively suppress weeds during fallow[J]. Weed Science, 2001, 49(3): 406-413.[8] Sampietro D A, Catalan C A, Vattuone M A. Isolation, Identification and Characterization of Allelochemicals/Natural Products[M]. Boca Raton: Science Publishers, 2009.[9] Kelton J, Price A J, Mosjidis J. Allelopathic weed suppression through the use of cover crops[J]. Weed Control, 2012, 2: 978-953.[10] Stoker J, Bellis D. The isolation and identification of bound coumarin from Melilotus album[J]. Canadian Journal of Biochemistry and Physiology, 1962, 40(12): 1763-1768.[11] Kang S S, Lee Y S, Lee E B. Saponins and flavonoid glycosides from yellow sweetclover[J]. Archives of Pharmacal Research, 1988, 11(3): 197-202.[12] Macías F A, Simonet A M, Galindo J C. Bioactive steroids and triterpenes from Melilotus messanensis and their allelopathic potential[J]. Journal of Chemical Ecology, 1998, 23(7): 1781-1803.[13] Macías F A, Simonet A M, Galindo J C, et al. Bioactive phenolics and polar compounds from Melilotus messanensis[J]. Phytochemistry, 1999, 50(1): 35-46.[14] 邬彩霞, 李志华, 沈益新. 豆科牧草水浸提液的酚酸物质含量及化感潜力[J]. 草地学报, 2007, 15(5): 401-406.[15] Takemura T, Kamo T, Sakuno E, et al. Discovery of coumarin as the predominant allelochemical in Gliricidia sepium[J]. Journal of Tropical Forest Science, 2013, 25(2): 268-272.[16] Bertin C, Paul R N, Duke S O, et al. Laboratory assessment of the allelopathic effects of fine leaf fescues[J]. Journal of Chemical Ecology, 2003, 29(8): 1919-1937.[17] Chung I M, Kim K H, Ahn J K, et al. Comparison of allelopathic potential of rice leaves, straw, and hull extracts on barnyardgrass[J]. Agronomy Journal, 2003, 95(4): 1063-1070.[18] Kato-Noguchi H, Yamamoto M, Tamura K, et al. Isolation and identification of potent allelopathic substances in rattail fescue[J]. Plant Growth Regulation, 2010, 60(2): 127-131.[19] Bich T, Ohno O, Suenaga K, et al. Isolation and identification of an allelopathic substance from duckweed (Lemna minor L.)[J]. Allelopathy Journal, 2013, 32(2): 213-221.[20] Salam A, Kato-Noguchi H. Isolation and characterisation of two potent growth inhibitory substances from aqueous extract of Bangladeshi rice cultivar BR17[J]. Allelopathy Journal, 2011, 27(2): 207-216.[21] 杨国庆. 紫茎泽兰淋溶主效化感物质的分离鉴定及其对旱稻幼苗的作用机理[D]. 北京: 中国农业科学院, 2006.[22] Eljarrat E, Barceló D. Sample handling and analysis of allelochemical compounds in plants[J]. TrAC Trends in Analytical Chemistry, 2001, 20(10): 584-590.[23] El-Shahawy T A, Abdelhamid M T. Potential allelopathic effect of six phaseolus vulgaris recombinant inbred lines for weed control[J]. Australian Journal of Basic&Applied Sciences, 2013, 7(1): 462-467. [24] Razavi S M. Plant coumarins as allelopathic agents[J]. International Journal of Biological Chemistry, 2011, 5: 86-90.[25] Sharma R, Negi D S, Shiu W K, et al. Characterization of an insecticidal coumarin from Boenninghausenia albiflora[J]. Phytotherapy Research, 2006, 20(7): 607-609.[26] Brooker N, Kuzimichev Y, Laas J, et al. Evaluation of coumarin derivatives as anti-fungal agents against soil-borne fungal pathogens[J]. Communications in Agricultural and Applied Biological Sciences, 2006, 72(4): 785-793.[27] Ascari J, Takahashi J A, Boaventura M A D. Phytochemical and biological investigations of Caryocar brasiliense Camb[J]. Boletín Latinoamericanoy del Caribe de Plantas Medicinalesy Aromáticas, 2010, 9(1): 20-28.[28] Hong Y, Hu H, Sakoda A, et al. Straw preservation effects of Arundo donax L. on its allelopathic activity to toxic and bloom-forming Microcystis aeruginosa[J]. Water Science & Technology, 2011, 63(8): 1566-1573.[29] Qiao M, Xiao J, Yin H, et al. Analysis of the phenolic compounds in root exudates produced by a subalpine coniferous species as responses to experimental warming and nitrogen fertilisation[J]. Chemistry and Ecology, 2014, 30(6): 1-11. |