[1] 王庆任, 崔岩山, 董艺婷. 植物修复-重金属污染土壤整治有效途径[J]. 生态学报, 2001, 21(2): 326-331. [2] 韦朝阳, 陈同斌. 重金属超富集植物及植物修复技术研究进展[J]. 生态学报, 2001, 21(7): 1196-1203. [3] Salt D E, Blaylock M, Ensley B D, et al. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants[J]. Biotechnology, 1995, 13: 468-474. [4] 宋瑜, 金樑, 曹宗英, 等. 植物对重金属镉的响应及其耐受机理[J]. 草业学报, 2008, 17(5): 84-91. [5] Robinson B H, Mill T M, Petit D, et al. Natural and induced cadmium accumulation in poplar and willow: Implication for phytoremediation[J]. Plant and Soil, 2000, 227: 301-306. [6] Brooks R R, Chambers M F, Nicks L J, et al. Phytomining[J]. Trends in Plant Science, 1998, 3(9): 359-362. [7] 魏树和, 杨传杰, 周启星. 三叶鬼针草等7 种常见菊科杂草植物对重金属的超富集特征[J]. 环境科学, 2008, 29(10): 2912-2918. [8] 唐世荣. 超积累植物在时空、科属内的分布特点及寻找方法[J]. 农村生态环境, 2001, 17(4): 56-60. [9] 龙新宪, 杨肖娥, 倪吾钟. 重金属污染土壤修复技术研究现状与展望[J]. 应用生态学报, 2002, 13(6): 757-762. [10] 罗春玲, 沈振国. 植物对重金属的吸收和分布[J]. 植物学通报, 2003, 20(1): 59-66. [11] 王华, 曹启民, 桑爱云, 等. 超积累植物修复重金属污染土壤的机理[J]. 安徽农业科学, 2006, 34(22): 5948-5950. [12] Baker A J M, Reeves R D, Hajar A S. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J & C. Presl (Brassicaceae)[J]. New Phytologist, 1994, 127: 61-68. [13] Oliver M J, Tuba Z, Mishler B D. The evolution of vegetative desiccation tolerance in land plants[J]. Plant Ecology, 2000, 151(1): 85-100. [14] Ma L Q, Komar K M, Tu C, et al. Discovery of an efficacious arsenic hyperaccumulating fern plant[J]. Nature, 2001, 409(2): 579. [15] Zhao F J, Dunham S J, McGrath S P. Arsenic hyperaccumulation by different fern species[J]. New Phytologist, 2002, 156(1): 27-31. [16] 廖晓勇, 陈同斌, 谢华, 等. 磷肥对砷污染土壤的植物修复效率的影响: 田间实例研究[J]. 环境科学学报, 2004, 24(3): 455-462. [17] Chaney R L, Li Y M, Angle J S. Improving metal hyperaccumulater wild plants to develop commercial phytoextraction systems: Approaches and progress[A]. In: Terry N, Bacuelos G S. Phytoremediation of Trace Elements[M]. Miami: Ann Arbor Press, 1999: 112-128. [18] 张玉秀, 柴团耀, Burkard G. 植物耐重金属机理研究进展[J]. 植物学报, 1999,41(5): 453-457. [19] 朱广廉. 植物生理学实验指导[M]. 北京: 北京大学出版社, 1990. [20] 南京农学院. 土壤农化分析[M]. 北京: 农业出版社, 1980. [21] 王焕校. 污染生态学[M]. 北京: 高等教育出版社, 2002. [22] 夏汉平, 束文圣. 香根草和百喜草对铅锌尾矿重金属的抗性与吸收差异研究[J]. 生态学报, 2001, 21(7): 1121-1129. [23] 刘秀梅, 聂俊华, 王庆仁. 6种植物对Pb的吸收与耐性研究[J]. 植物生态学报, 2002, 26(5): 533-537. [24] Monni S, Salemaa M, White C, et al. Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter, in south-west Finland[J]. Environmental Pollution, 2000, 109: 211-219. [25] 王齐, 谭一凡, 史正军, 等. 中水灌溉对绿地植物影响的研究[J]. 草业科学, 2009, 26(3): 111-117. [26] 李新博, 谢建治, 李博文, 等. 镉对紫花苜蓿不同生长期生物量的影响及饲用安全评价[J]. 草业学报, 2009, 18(5): 265-269. [27] 李源, 李金娟, 魏小红. 镉胁迫下蚕豆幼苗抗氧化能力对外源NO和H2O2的响应[J]. 草业学报, 2009, 18(6): 186-191. [28] Matos A T, Uhlig C, Hanse E, et al. Ecophysiological responses of Empetrum nigrum to heavy metal pollution[J]. Environmental Pollution, 2001, 112: 121-129. [29] 朱云集, 王晨阳, 马元喜, 等. 砷胁迫对小麦根系生长及活性氧代谢的影响[J]. 生态学报, 2000, 20: 707-710. [30] Baker A J M. Metal tolerance[J]. New Phytologist, 1987, 106: 93-111. [31] Mattina M I, Lannucci-Berger W, Mussante C, et al. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil[J]. Environmental Pollution, 2003, 124: 375-378. [32] Tang S R, Wilke B M, Huang C Y. The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the people’s Republic of China[J]. Plant and Soil, 1999, 209: 225-232. [33] Reeves R D, Baker A J M, Brooks R R. Abnormal accumulation of trace metals by plants[J]. Mining Environmental Management, 1995, 9: 4-8. [34] 潘瑞炽. 植物生理学(第五版)[M]. 北京: 高等教育出版社, 2004. [35] Tyle G, Olsen T. Concentration of 60 elements in the soil solution as related to the soil acidity[J]. European Journal of Soil Science, 2001, 52: 151-165. |