[1] Wang Z R, Yang G J, He X B, et al . Relationship between plant community and environmental factors in the source regions of Yangtze River. Journal of Glaciology and Geocryology, 2011, 33(3): 640-645. [2] He J S, Fang J Y, Ma K P, et al . Biodiversity and ecosystem productivity: why is there a discrepancy in the relationship between experimental and natural ecosystems. Acta Phytoecologica Sinica, 2003, 27(6): 835-843. [3] Wang H M, Zhang F, Pang C H, et al . Interrelation between plant species diversity and soil factors in the middle and lower reaches of Fenhe River. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(10): 2077-2085. [4] Bai K Y, Rong Y P, Yang Y H, et al . Relationships between grassland biodiversity and primary productivity and soil condition in farming-pastoral regions of northern China. Chinese Journal of Ecology, 2013, 32(1): 22-26. [5] Wang X T, Zhang S H, Chen D D, et al . The effects of natural graszing intensity on plant community and soil nutrients in alpine meadow. Acta Agrestia Sinica, 2010, 18(4): 510-516. [6] Wang C T, Long R J, Wang Q J, et al . Distribution of organic matter, nitrogen and phosphorus along an altitude gradient and productivity change and their relationships with environmental factors in the alpine meadow. Acta Prataculturae Sinica, 2005, 14(4): 15-20. [7] Wang J L, Zhong Z M, Wang Z H, et al . Soil C/P distribution characteristics of alpine steppe ecosystems in the Qinghai Tibetan Plateau. Acta Prataculturae Sinica, 2014, 23(2): 9-19. [8] Shang Z H, Long R J. Formation reason and recovering problem of the ‘black soil type’ degraded alpine grassland in Qinghai-Tibetan Plateau. Chinese Journal of Ecology, 2005, 24 (6): 652-656. [9] Song R D, Hasagawa N, Li G M, et al . Botanical composition and grazing behaviour of Qinghai Yaks of plateau type in the natural rangeland. Acta Ecologiae Animalis Domastici, 2008, 29(5): 31-35. [10] Dong Q M, Zhao X Q, Ma Y S, et al . Effects of stocking rate and grazing time of yaks on soil nutrient contents in Kobrecia parva alpine meadow. Chinese Journal of Ecology, 2005, 24(7): 729-735. [11] Smith R S, Rushton S P. The effects of grazing management on the vegetation of mesotrophic (meadow) grassland in Northern England. Journal of Applied Ecology, 1994, 31: 13-24. [12] Shan G L, Xu Z, Ning F. The changes of community structure and species diversity in different succession stage in typical steppe. Journal of Arid Land Resources and Environment, 2010, 24(2): 163-169. [13] Dong Q M, Zhao X Q, Ma Y S, et al . Niche of main plant populations on a warm-seasonal pastureland of alpine Kobrecia parva meadow. Chinese Journal of Ecology, 2006, 25(11): 1323-1327. [14] Tan G L, Du G Z , Li Z Z , et al . Relationship between species richness and productivity in an alpine meadow plant community. Acta Phytoecologica Sinica, 2002, 26 (Supp l): 57-62. [15] Zuo X A, Zhao X Y, Zhao H L, et al . Changes of species diversity and productivity in relation to soil properties in sandy grassland in Horqin Sand Land. Environmental Science, 2007, 28(5): 945-951. [16] Zhu Y, Kang M Y, Liu Q R, et al . Relationship between biodiversity and aboveground biomass in Alpine Meadow on M t Helan China. Chinese Journal of Applied and Environmental Biology, 2007, 13(6): 771-776. [17] Wang Q J, Wang W Y, Deng Z F. The dynamics of biomass and the allocation of energy in alpine Kobresia meadow communities, Haibei region of Qinghai province. Acta Phytoecologica Sinica, 1998, 22(3):222-230. [18] Farley R A, Fitter A H. The responses of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches. Journal of Ecology, 1999, 87:849-859. [19] Hejcman M, Klaudisová M, Štursa J, et al . Revisiting a 37 years abandoned fertilizer experiment on Nardus grassland in the Czech Republic. Agriculture, Ecosystems & Environment, 2007, 118: 231-236. [20] Chandra P R, Kala A, Singh S K, et al . Effects of sheep and goat grazing on the species diversity in the alpine meadows of Western Himalaya. The Environmentalist, 2002, 22: 183-189. [21] Kala C P. Ecology and Conservation of Alpine Meadows in the Valley of Flowers National Park, Garhwal Himalaya[M]. Dehradun: Forest Research Institute, 1998: 180. [22] Bai Y F, Li L H, Wang Q B, et al . Changes in plant species diversity and productivity along gradients of precipitation and elevation in the Xilin River basin, Inner Mongolia. Acta Phytoecologica Sinica, 2000, 24(6): 667-673. [23] Zhang L J, Yue M, Gu F X, et al . Coupling relationship between plant communities species diversity and soil factors in ecotone between desert and oasis in Fukang, Xinjiang. Chinese Journal of Applied Ecology, 2002, 13(6): 658-662. [24] Luo Y Y, Meng Q T, Zhang J H, et al . Species diversity and biomass in relation to soil properties of alpine meadows in the eastern Tibetan Plateau in different degradation stages. Journal of Glaciology and Geocryology, 2014, 36(5): 1298-1305. [25] Hrevušová Z, Hejcman M, Pavl u ˙ V, et al . Long-term dynamics of biomass production, soil chemical properties and plant species composition of alluvial grassland after the cessation of fertilizer application in the Czech Republic. Agriculture, Ecosystems & Environment, 2009, 130:123-130. [26] Tilman D. Resource Competition and Community Structure[M]. Princeton: Princeton University Press, 1982. [27] Michal H, Michaela C ˙ , Jürgen S, et al . The rengen grassland experiment: effect of soil chemical properties on biomass production, plant species composition and species richness. Folia Geobotanica, 2010, 45:125-142. [28] Janssens F, Peeters A, Tallowin J R B, et al . Relationship between soil chemical factors and grassland diversity. Plant and Soil, 1998, 202: 69-78. [29] Crawley M J, Johnston A E, Silvertown J, et al . Determinants of species richness in the Park Grass Experiment. The American Naturalist, 2005, 165: 179-192. [30] Cheng Y H, Zhao R X, Dong K H. Research on plasma K + channel protein. Journal of Shanxi Agricultural Sciences, 2008, 36(2): 3-7. [31] Zhang H M, Wang Z Y, Yu R G, et al . Study on soil physical and chemical properties under different inter-cropping for orchards on Hilly region in northern Jiangxi province. Research of Soil and Water Conservation, 2010, 17(4): 258-261, 268. [32] Chytr�� M, Hejcman M, Hennekens S M, et al . Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application: evidence from the Rengen Grassland Experiment. Applied Vegetation Science, 2009, 2: 167-176. [33] Vanguelova1 E I, Nortcliff S, Moffat A J, et al . Morphology, biomass and nutrient status of fine roots of Scots pine ( Pinus sylvestris ) as influenced by seasonal fluctuations in soil moisture and soil solution chemistry. Plant and Soil, 2005, 270: 233-247. [34] Güsewell S. High nitrogen: phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges. New Phytologist, 2005, 166: 537-550. [35] Honsová D, Hejcman M, Klaudisová M, et al . The species composition of an alluvial meadow in the Czech Republic after 40 years of applying nitrogen, phosphorus and potassium fertilizer. Preslia, 2007, 79: 245-258. [1] 王增如, 杨国靖, 何晓波, 等. 长江源区植物群落特征与环境因子的关系. 冰川冻土, 2011, 33(3): 640-645. [2] 贺金生, 方精云, 马克平, 等. 生物多样性与生态系统生产力:为什么野外观测和受控实验结果不一致. 植物生态学报, 2003, 27(6): 835-843. [3] 王慧敏, 张峰, 庞春花, 等. 汾河流域中下游植物群落物种多样性与土壤因子的关系. 西北植物学报, 2013, 33(10): 2077-2085. [4] 白可喻, 戎郁萍, 杨云卉, 等. 北方农牧交错带草地生物多样性与草地生产力和土壤状况的关系. 生态学杂志, 2013, 32(1): 22-26. [5] 王向涛, 张世虎, 陈懂懂, 等. 不同放牧强度下高寒草甸植被特征和土壤养分变化研究. 草地学报, 2010, 18(4): 510-516. [6] 王长庭, 龙瑞军, 王启基, 等. 高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系. 草业学报, 2005, 14(4): 15-20. [7] 王建林, 钟志明, 王忠红, 等. 青藏高原高寒草原生态系统土壤碳磷比的分布特征. 草业学报, 2014, 23(2): 9-19. [8] 尚占环, 龙瑞军. 青藏高原“黑土型”退化草地成因与恢复. 生态学杂志, 2005, 24(6): 652-656. [9] 宋仁德, 长谷川信美, 李国梅, 等. 天然草地放牧牦牛采食行为及食性选择的研究. 家畜生态学报, 2008, 29(5): 31-35. [10] 董全民, 赵新全, 马玉寿, 等. 牦牛放牧率和放牧季节对小嵩草高寒草甸土壤养分的影响. 生态学杂志, 2005, 24(7): 729-735. [12] 单贵莲, 徐柱, 宁发. 典型草原不同演替阶段群落结构与物种多样性变化. 干旱区资源与环境, 2010, 24(2): 163-169. [13] 董全民, 赵新全, 马玉寿, 等. 高寒小嵩草草甸暖季草场主要植物种群的生态位. 生态学杂志, 2006, 25(11): 1323-1327. [14] 覃光莲, 杜国祯 , 李自珍, 等. 高寒草甸植物群落中物种多样性与生产力关系研究. 植物生态学报, 2002, 26(Supp l): 57-62. [15] 左小安, 赵学勇, 赵哈林, 等. 科尔沁沙质草地群落物种多样性、生产力与土壤特性的关系. 环境科学, 2007,28(5):945-951. [16] 朱源, 康慕谊, 刘全儒, 等. 贺兰山高山草甸生物多样性和地上生物量的关系. 应用与环境生物学报, 2007, 13(6): 771-776. [17] 王启基, 王文颖, 邓自发. 青海海北地区高山嵩草草甸植物群落生物量动态及能量分配. 植物生态学报, 1998, 22(3): 222-230. [22] 白永飞, 李凌浩, 王其兵, 等. 锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究. 植物生态学报, 2000, 24(6): 667-673. [23] 张林静, 岳明, 顾峰雪, 等. 新疆阜康绿洲荒漠过渡带植物群落物种多样性与土壤环境因子的耦合关系. 应用生态学报, 2002, 13(6): 658-662. [24] 罗亚勇, 孟庆涛, 张静辉, 等. 青藏高原东缘高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系. 冰川冻土, 2014, 36(5): 1298-1305. [30] 程钰宏, 赵瑞雪, 董宽虎. 植物钾(K + )离子通道的研究. 山西农业科学, 2008, 36(2): 3-7. [31] 张华明, 王昭艳, 喻荣岗, 等. 汤崇军赣北丘陵区果园不同套种模式对退化红壤理化性质的影响. 水土保持研究, 2010, 17(4): 258-261, 268. |