[1] Bussis D, Meineke D, Sonnewald U, et al . Solute accumulation and decreased photosynthesis in leaves of potato plants expressing yeast-derived invertase either in the apoplast, vacuole or cytosol. Planta, 1997, 202(1): 126-136. [2] Yeo E T, Hawk-bin K, Sang-Eun H, et al . Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Saccharomyces cerevisiae . Molecules and Cells, 2000, 10(3): 263-268. [3] Zhang N, Si H J, Li L, et al . Drought and salinity tolerance in transgenic potato expressing the betaine aldehyde dehydrogenase gene. Acta Agronomica Sinca, 2009, 35(6): 1146-1150. [4] Courtois B, McLaren G, Sinha P K, et al . Mapping QTL associated with drought avoidance in upland rice. Molecular Breeding, 2000, 6: 55-66. [5] Seki M, Narusaka M, Abe H, et al . Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA micro array. Plant Cell, 2001, 13: 61-72. [6] Fowler S, Thomashow M F. Arabidopsis transcription profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002, 14: 1675-1690. [7] Liu Q, Kasuga M. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis . Plant Cell, 1998, 10: 1391-1406. [8] Kasugam M, Liu Q, Miura S, et al . Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nature Biotechnology, 1999, 17: 287-292. [9] Kasuga M, Miura S, Shinozaki K, et al . A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought and low-temperature stress tolerance in tobacco by gene transfer. Plant and Cell Physiology, 2004, 45(3): 346-350. [10] Liu L X, Zhao L S, Liang X X, et al . Study on production of transgenic wheat with a stress-inducible transcription factor gene DREB1A by microprojectile bombardment. China Biotechnology, 2003, 23(11): 53-56. [11] Jaglo-Ottosen K R, Gilmour S J, Zarka D G, et al . Arabidopsis aBF1 over-expression induces CoR genes and enhances freezing tolerance. Science, 1998, 280: 104-106. [12] Pellegrineschi A, Reynolds M, Pacheco M, et al . Stress-induced expression in wheat of the Araobidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Geneme, 2004, 47(3): 493-500. [13] Jia X X, Qi E F, Wang Y H, et al . Construction of bivalent plant expression vector of DREB1A and Bar genes and studies of genetic transformation of potato. Acta Prataculturae Sinica, 2014, 23(3): 110-117. [14] Li S J, Zhang Z Y. Expression of the Ta6-SFT gene in Brassica napus under drought stress. Acta Prataculturae Sinica, 2014, 23(5): 161-167. [15] Wei Q, Cui L H, Yang S J. Experimental Guidance of Molecular Biology[M]. Beijing: Higher Education Press, 2005. [16] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. Methods, 2001, 25: 402-408. [17] Zhang Z A, Zhang M S, Wei R H. Experimental Guidance of Plant Physiology[M]. Beijing: China Agricultural Science and Technology Press, 2004. [18] Gao W J, Xu J, Xie K Y, et al . Physiological responses of Agropyron cristatum under Na 2 CO 3 and NaHCO 3 stress. Acta Prataculturae Sinica, 2011, 20(4): 299-304. [19] Li Y, Liu G B , Gao H W, et al . A comprehensive evaluation of salt-tolerance and the physiological response of Medicago sativa at the seedling stage. Acta Prataculturae Sinica, 2010, 19(4): 79-86. [20] Zhang H N, Li X J, Li C D, et al . Effects of overexpression of wheat superoxide dismutase (SOD) genes on salt tolerant capability in tobacco. Acta Agronomica Sinica, 2008, 34: 1403-1408. [21] Wang Y X, Zhang B, Wang T. Effect of salt stress on the contents of chlorophyll and betaine and its membrane permeability of Medicago sativa . Pratacultural Science, 2009, 26(3): 53-56. [22] Huang D N. Progress on genetically engineering herbicide-resistance into crops. Biological Engineering Progress, 1997, 17(5): 14-17. [23] Wu A Z, Tang K X, Pan J S, et al . Production of herbicide-resistant rice with transforming heterogene. Acta Genetica Sinica, 2000, 21(17): 992-998. [24] Manabe T. Benefits of glyphosate tolerant soybeans in Japanese soybean production[C]. The 18th Asian-Pa-cific Weed Science Society Conference. Beijing, P R China, 2001: 449-452. [25] Marlander B. Genetically modified varieties in Germany-status and prospects with special respect of sustainable sugar beet cultivation. Zukerindustrie, 1999, 124(12): 943-946. [26] Oard J H. Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice. Molecular Breeding, 1996, 2(4): 359-368. [27] Vasil I K. Phosphinothricin-resistant Crops[M]. Boca Raton FL: CRC, N. Y., 1996: 85-89. [3] 张宁, 司怀军, 栗亮, 等. 转甜菜碱醛脱氢酶基因马铃薯的抗旱耐盐性. 作物学报, 2009, 35(6): 1146-1150. [10] 刘录祥, 赵林姝, 梁欣欣, 等. 基因枪法获得逆境诱导转录因子DREB1A转基因小麦的研究. 中国生物工程杂志, 2003, 23(11): 53-56. [13] 贾小霞, 齐恩芳, 王一航, 等. 转录因子DREB1A基因和Bar基因双价植物表达载体的构建及对马铃薯遗传转化的研究. 草业学报, 2014, 23(3): 110-117. [14] 李淑洁, 张正英. Ta6-SFT基因对油菜的转化及抗旱性分析. 草业学报, 2014, 23(5): 161-167. [15] 魏群, 崔丽华, 杨淑杰. 分子生物学实验指导[M]. 北京:高等教育出版社, 2005. [17] 张治安, 张美善, 蔚荣海. 植物生理学实验指导[M]. 北京: 中国农业科学技术出版社, 2004. [18] 高文俊, 徐静, 谢开云, 等. Na 2 CO 3 和NaHCO 3 胁迫下冰草的生长及生理响应. 草业学报, 2011, 20(4) : 299-304. [19] 李源, 刘贵波, 高洪文, 等. 紫花苜蓿种质耐盐性综合评价及盐胁迫下的生理反应. 草业学报, 2010, 19(4): 79-86. [20] 张海娜, 李小娟, 李存东, 等. 过量表达小麦超氧化物歧化酶(SOD)基因对烟草耐盐能力的影响. 作物学报, 2008, 34: 1403-1408. [21] 王玉祥, 张博, 王涛. 盐胁迫对苜蓿叶绿素、甜菜碱含量和细胞膜透性的影响. 草业科学, 2009, 26(3): 53-56. [22] 黄大年. 农作物抗除草剂遗传工程研究进展. 生物工程进展, 1997, 17(5): 14-17. [23] 吴爱忠, 唐克轩, 潘俊松, 等. 转基因培育抗除草剂水稻. 遗传学报, 2000, 21(17): 992-998. |