草业学报 ›› 2016, Vol. 25 ›› Issue (1): 47-63.DOI: 10.11686/cyxb2015073
许玉凤1, 2, 杨井1*, 李卫红1, 方功焕1, 2, 张淑花1, 2, 邓海军1, 2, 董杰3
收稿日期:
2015-02-05
出版日期:
2016-01-20
发布日期:
2016-01-20
通讯作者:
*通信作者Corresponding author. E-mail: yangjing@ms.xjb.ac.cn
作者简介:
许玉凤(1969-),女,山东冠县人,在读博士。E-mail: xuyufeng_159@163.com
基金资助:
XU Yu-Feng1, 2, YANG Jing1, *, LI Wei-Hong1, FANG Gong-Huan1, 2, ZHANG Shu-Hua1, 2, DENG Hai-Jun1, 2, DONG Jie3
Received:
2015-02-05
Online:
2016-01-20
Published:
2016-01-20
摘要: 基于逐像元一元线性回归模型,应用MODIS NDVI数据对AVHRR-GIMMS NDVI 数据进行时间序列拓展,建立了1982-2013年间长时间序列生长季最大NDVI数据集,分析了新疆不同分区的生长季植被NDVI变化及其对气候变化的响应。结果表明,1)北疆平原地区、南疆平原地区和南疆山地地区的植被NDVI变化呈显著增长趋势,北疆山地地区的植被呈下降趋势。2)水分条件和最低气温是影响新疆植被生长的重要因素,但不同分区的影响程度不同。北疆平原地区植被受水分条件影响较大,其中最低气温对农田植被影响较大;南疆平原地区植被受气温和降水的双重作用;山地地区植被受水分条件影响较大。3)从不同植被类型来看,水分条件对草地的影响最大,其次是林地,农田植被受水分条件的限制较小,与灌溉有着直接关系。4)增温增湿的气候条件有利于植被生长;北疆山地地区植被退化趋势受气候变化、火灾、平原草地围栏保护后放牧压力向山地转移等综合因素的影响。
许玉凤, 杨井, 李卫红, 方功焕, 张淑花, 邓海军, 董杰. 1982-2013年新疆不同植被生长时空变化[J]. 草业学报, 2016, 25(1): 47-63.
XU Yu-Feng, YANG Jing, LI Wei-Hong, FANG Gong-Huan, ZHANG Shu-Hua, DENG Hai-Jun, DONG Jie. Spatial-temporal change in different vegetation growth of Xinjiang from 1982 to 2013[J]. Acta Prataculturae Sinica, 2016, 25(1): 47-63.
[1] Yan X X, Dai C X. Change characteristics of the vegetation index in the north of the Tianshan Mountains and the relation with the temperature and precipitation. Meteorological and Environmental Sciences, 2013, 36(2): 42-46. [2] Ma L Y, Cui X, Feng Q S, et al . Dynamic changes of grassland vegetation coverage from 2001 to 2011 in Gannan Prefecture. Acta Prataculturae Sinica, 2014, 23(4): 1-9. [3] Xin Z B, Xu J X, Zheng W. The influences of climate change and human activity on vegetation cover change in Loess Plateau. Science in China Series D, 2007, 37(11): 1504-1514. [4] Hua L M. Study the change of NDVI and climate factors and carrying capacity and their correlation in Maqu County, Gansu. Acta Prataculturae Sinica, 2012, 21(4): 224-235. [5] Li F, Zhao J, Zhao C Y, et al . Simulating and analyzing dynamic changes of potential vegetation in arid areas of Northwest China.Acta Prataculturae Sinica, 2011, 20(4): 42-50. [6] Zhang Y N, Niu J M, Zhang Q, et al . A discussion on applications of vegetation index for estimating aboveground biomass of typical steppe. Acta Prataculturae Sinica, 2012, 21(1): 229-238. [7] Li H X, Liu G H, Fu B J. Response of vegetation to climate change and human activity based on NDVI in the Three-River Headwaters region. Acta Ecological Sinica, 2011, 31(19): 5495-5504. [8] Sun Y L, Guo P, Yan X D, et al . Dynamics of vegetation cover and its relationship with climate change and human activities in Inner Mongolia. Journal of Natural Resources, 2010, 25(3): 407-414. [9] Tucker C J, Slayback D A, Pinzon J E, et al . Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International Journal of Biometeorology, 2001, 45: 184-190. [10] Jarlan L, Mangiarotti S, Mougin E, et al . Assimilation of SPOT/VEGETATION NDVI data into a Sahelian vegetation dynamics model. Remote Sensing of Environment, 2008, 112(4): 1381-1394. [11] Olusegun C F, Adevewa Z D. Spatial and temporal variation of normalized difference vegetation index (NDVI) and rainfall in the North East Arid Zone of Nigeria. Atmospheric and Climate Sciences, 2013, 3(4): 421-426. [12] Zhang J M. The ecological safety and its assessment principle in arid: A case of Xinjiang. Ecology and Environment, 2007, 16(4):1328-1332. [13] Du Z T, Zhan Y L, Wang C Y. Study on vegetation-cover changes based on NDVI serial images. Remote Sensing Technology and Application, 2008, 23(1): 47-51. [14] Wang G G, Zhou K F, Sun L. Study on the vegetation dynamic change and R/S analysis in the past ten years in Xinjiang. Remote Sensing Technology and Application, 2010, 25(1): 84-90. [15] Zhang S J, Wang T, Wang T M, et al . The variations in NDVI of different vegetation types in Xinjiang and its relation to climate factors. Pratacultural Science, 2009, 26(5): 26-31. [16] Zhao X, Tan K, Fang J Y. NDVI-based interannual and seasonal variations of vegetation activity in Xinjiang during the period of 1982-2006. Arid Zone Research, 2011, 28(1): 10-16. [17] Liu F, Zhang H Q, Dong G L. Vegetation dynamics and precipitation sensitivity in Yili Valley grassland. Resources Science, 2014, 36(8): 1724-1731. [18] Liu L, Liu J J, Zhu H Y. NDVI change of different vegetation types in the middle park of Southern Tianshan Mountain during 2001-2007. Environmental Monitoring in China, 2008, 24(5): 69-73. [19] Zhang Y D, Xu Y T, Gu F X, et al . Correlation analysis of NDVI with climate and hydrological factors in oasis and desert. Acta Phytoecologica Sinica, 2003, 27(6): 816-821. [20] Pan G Y, Mu G J, Yue J, et al . Change of the oasis-desert ecotone and its causes in Qira County during the period of 2001-2010. Arid Zone Research, 2014, 31(1): 169-175. [21] Xing W Y, Li D P, Wang L, et al . Dynamic variation of grassland area and meteorological influence analysis in Barkol. Pratacultural Science, 2014, 31(3): 408-414. [22] Mao D H, Wang Z M, Luo L, et al . Correlation analysis between NDVI and climate in Northeast China based on AVHRR and GIMMS data sources. Remote Sensing Technology and Application, 2012, 27(1): 77-85. [23] Fensholt R, Rasmussen K, Nielsen T T, et al . Evaluation of earth observation based long term vegetation trends-inter-comparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS,Terra MODIS and SPOT VGT data. Remote Sensing of Environment, 2009, 113: 1886-1898. [24] Tucker C J, Pinzon J E, Brown M E, et al . An extended AVHRR 8km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 2005, 26(20): 4485-4498. [25] Yang H F, Gang C C, Mu S J, et al . Analysis of the spatial-temporal variation in net primary productivity of grassland during the past 10 years in Xinjiang. Acta Prataculturae Sinica, 2014, 23(3): 39-50. [26] Nemani R R, Keeling C D, Hashimoto H, et al . Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300: 1560-1563. [27] Shi Q D, Shi Q S, Liu M. Research on vegetation classification by remote sensing in western arid land of China. Journal of Xinjiang University (Natural Science Edition), 2012, 29(4): 390-394, 420. [28] Allen R G, Pereira L S, Raes D, et al . Crop evapotranspiration-guidelines for computing crop water requires. FAO Irrigation and Drainage Paper 56[M]. Rome, Italy: Food and Agriculture Organization of the United Nations, ISBN92-5-104219-5, 1998. [29] Guo N, Zhu Y J, Wang J M, et al . The relationship between NDVI and climate elements for 22 years in different vegetation areas of northwest China. Journal of Plant Ecology, 2008, 32(2): 319-327. [30] Dai S P, Zhang B, Wang H J. Spatial-temporal change of vegetation index NDVI in Northwest China and its influencing factors. Journal of Geo-information Science, 2010, 12(3): 315-320. [31] Piao S L, Mohanmat A, Fang J Y, et al . NDVI-based increase in growth of temperature grassland and its response to climate changes in China. Global Environment Change, 2006, 16(4): 340-348. [32] Piao S L, Fang J Y, Zhou L M, et al . Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochemical Cycles, 2005, 19: GB2027. [33] Liang S, Peng S S, Lin X, et al . NDVI-based spatial-temporal change in grassland growth of China from 1982 to 2010. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(2): 311-320. [34] Dong Y, Jiao L, Yang G H, et al . Monitoring of vegetation cover dynamic in Xinjiang based on SPOT-VGT date from 1998 to 2007. Bulletin of Soil and Water Conservation, 2009, 29(2): 125-128. [35] Mamattursun E, Hamid Y, Zulpiya M, et al . Driving forces of farmland dynamics and its ecological effects in Keriya Oasis in recent 60 years. Agricultural Research in the Arid Areas, 2013, 31(3): 200-206. [36] Zhang S J, Wang T M, Li Z W, et al . Dynamic correlation analysis of remote-sensing green index of vegetation and hydrothermal conditions in Xinjiang 1982-2003. Journal of Ecology and Rural Environment, 2009, 25(2): 16-19. [37] Yan J J, Qiao M, Zhou H F, et al . Vegetation dynamic in Ili River valley of Xinjiang based on MODIS/NDVI. Arid Land Geography, 2013, 36(3): 512-519. [38] Yang Y T, Zheng D, Zhang X Q, et al . The spatial coupling of land use changes and its environmental effects on Hotan oasis during 1980-2010. Acta Geographica Sinica, 2013, 68(6): 813-824. [39] Li Y, Liu Y, Ma L Y, et al . Spatial variation of the vegetation effected by climatic factors in the north slope of Tianshan Mountains. Journal of Arid Land Resources and Environment, 2011, 25(7): 91-95. [40] Xu L P, Guo P, Wang L, et al . Changes of NDVI among the main vegetation types and its responses to climate factors in the middle of northern slope of Tianshan Mountains. Research of Soil and Water Conservation, 2013, 20(6): 158-167. [41] Zhu M L, Jiang Z Q. Relational analysis of the overgrazing rate on grassland degeneration in Xinjiang pastoral area. Qinghai Prataculture, 2012, 21(1): 2-14. [42] Yang P, Liu X H. Dynamic changes of vegetation coverage in Manas county based on SPOT-VGT NDVI data. Journal of Arid Land Resources and Environment, 2015, 29(2): 43-48. [43] Xie G H, Li X D, Zhou L P, et al . The study of variation in NDVI driven by climate factors on the northern slopes of the Tianshan Mountain. Advances in Earth Science, 2007, 22(6): 618-624. [44] Jing H, Zhang B L, Zhao Y W. The present situation, the degradation reasons and the governance policies in Xinjiang. Animal Husbandry of Xinjiang, 2010, (9): 58-61. [45] Ren Z X, Yang D Y. Impacts of climate change on agriculture in the arid region of Northwest China in recent 50 years. Journal of Arid Land Resources and Environment, 2008, 22(4): 91-95. [46] Liang Y, Guli N, Hart P, et al . The correlation analysis on the forest and meteorological factors in northern Xinjiang. Forest Fire Prevention, 2010, 4: 23-26. [47] Liang Y. Mountain forest disaster types and the way to prevent them in Xinjiang. Environmental Protection of Xinjiang, 1996, 18(3): 60-62. [48] Chen Y H, Li X B, Shi P J. Variation in NDVI driven by climate factors across China, 1983-1992. Acta Phytoecologica Sinica, 2001, 25(6): 716-720. [49] Ding T, Li Y, Liu Y. Relationship between the change of NDVI and the main vegetative and climate factors in Bayinbuluk grassland. Remote Sensing Application, 2009, 1: 53-59. [50] Lin X H. Analyses on factors affecting ecological environment change in south Xinjiang. Arid Zone Research, 2012, 29(3): 534-540. [51] Zhang G L, Xu X L, Zhou C P, et al . Responses of vegetation changes to climatic variations in Hulun Buir grassland in past 30 years. Acta Geographica Sinica, 2011, 66(1): 47-58. [1] 闫新霞, 戴翠贤. 天山北麓植被指数变化特征及其与气温和降水的关系. 气象与环境科学, 2013, 36(2): 42-46. [2] 马琳雅, 崔霞, 冯琦胜, 等. 2001-2011年甘南草地植被覆盖度动态变化分析. 草业学报, 2014, 23(4): 1-9. [3] 信忠保, 许炯心, 郑伟. 气候变化和人类活动对黄土高原植被覆盖变化的影响. 中国科学D辑: 地球科学, 2007, 37(11): 1504-1514. [4] 花立民. 玛曲草原植被NDVI与气候载畜量变化的关系分析. 草业学报, 2012, 21(4): 224-235. [5] 李飞, 赵军, 赵传燕, 等. 中国西北干旱区潜在植被模拟与动态变化分析. 草业学报, 2011, 20(4): 42-50. [6] 张艳楠, 牛建明, 张庆, 等. 植被指数在典型草原生物量遥感估测应用中的问题探讨. 草业学报, 2012, 21(1): 229-238. [7] 李辉霞, 刘国华, 傅伯杰. 基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究. 生态学报, 2011, 31(19): 5495-5504. [8] 孙艳玲, 郭鹏, 延晓东, 等. 内蒙古植被覆盖变化及其与气候、人类活动的关系. 自然资源学报, 2010, 25(3): 407-414. [12] 张军民. 干旱区生态安全问题及其评价原理:以新疆为例. 生态环境, 2007, 16(4): 1328-1332. [13] 杜子涛, 占玉林, 王长耀. 基于NDVI序列影像的植被覆盖变化研究. 遥感技术与应用, 2008, 23(1): 47-51. [14] 王桂钢, 周可法, 孙莉. 近10a新疆地区植被动态与R/S分析. 遥感技术与应用, 2010, 25(1): 84-90. [15] 张生军, 王涛, 王天明, 等. 新疆不同植被NDVI的变化及其与气候因子的关系. 草业科学, 2009, 26(5): 26-31. [16] 赵霞, 谭琨, 方精云. 1982-2006年新疆植被活动的年际变化及其季节差异. 干旱区研究, 2011, 28(1): 10-16. [17] 刘芳, 张红旗, 董光龙. 伊犁河谷草地植被NDVI变化及其降水敏感性特征. 资源科学, 2014, 36(8): 1724-1731. [18] 刘蕾, 刘建军, 朱海涌. 2001-2007年天山南坡中段不同植被类型NDVI变化分析——以新疆和静县为例. 中国环境监测, 2008, 24(5): 69-73. [19] 张远东, 徐应涛, 顾峰雪, 等. 荒漠绿洲NDVI与气候、水文因子的相关分析. 植物生态学报, 2003, 27(6): 816-821. [20] 潘光耀, 穆桂金, 岳健, 等. 2001-2010年策勒绿洲-沙漠过渡带的变化及其成因. 干旱区研究, 2014, 31(1): 169-175. [21] 邢文渊, 李大平, 王蕾, 等. 巴里坤草原面积动态及其气象因素分析. 草业科学, 2014, 31(3): 408-414. [22] 毛德华, 王宗明, 罗玲, 等. 基于MODIS 和AVHRR数据源的东北地区植被NDVI变化及其与气温和降水间的相关分析. 遥感技术与应用, 2012, 27(1): 77-85. [25] 杨红飞, 刚成诚, 穆少杰, 等. 近10年新疆草地生态系统净初级生产力及其时空格局变化研究. 草业学报, 2014, 23(3): 39-50. [27] 师庆东, 师庆三, 刘曼. 中国西部干旱区植被的遥感分类研究. 新疆大学学报(自然科学版), 2012, 29(4): 390-394, 420. [29] 郭铌, 朱燕君, 王介民, 等. 近22年来西北不同类型植被NDVI变化与气候因子的关系. 植物生态学报, 2008, 32(2): 319-327. [30] 戴声佩, 张勃, 王海军. 中国西北地区植被NDVI的时空变化及其影响因子分析. 地球信息科学学报, 2010, 12(3): 315-320. [33] 梁爽, 彭书时, 林鑫, 等. 1982-2013年全国草地生长时空变化. 北京大学学报(自然科学版), 2013, 49(2): 311-320. [34] 董印, 焦黎, 杨光华, 等. 基于SPOT-VGT数据的新疆1998-2007年植被覆盖变化监测. 水土保持通报, 2009, 29(2): 125-128. [35] 买买提吐尔逊·艾则孜, 海米提·依米提, 祖皮艳木·买买提, 等. 近60年来克里雅绿洲耕地动态变化驱动力及生态环境效应. 干旱地区农业研究, 2013, 31(3): 200-206. [36] 张生军, 王天明, 李忠汶, 等. 新疆植被遥感绿度指数与水、热关系的动态相关分析. 生态与农村环境学报, 2009, 25(2): 16-19. [37] 闫俊杰, 乔木, 周宏飞, 等. 基于MODIS/NDVI的新疆伊犁河谷植被变化. 干旱区地理, 2013, 36(3): 512-519. [38] 杨倚天, 郑度, 张雪芹, 等. 1980-2010年和田绿洲土地利用变化空间耦合及其环境效应. 地理学报, 2013, 68(6): 813-824. [39] 李杨, 刘艳, 马丽云, 等. 天山北坡气候因子对植被影响的空间分异性研究. 干旱区资源与环境, 2011, 25(7): 91-95. [40] 徐丽萍, 郭鹏, 王玲, 等. 天山北麓中段植被NDVI变化及其对气候因子的响应. 水土保持研究, 2013, 20(6): 158-167. [41] 朱美玲, 蒋志清. 新疆牧区超载放牧对草地退化影响分析. 青海草业, 2012, 21(1): 2-14. [42] 杨萍, 刘雪华. 基于SPOT-VGT NDVI的玛纳斯县植被覆盖变化分析. 干旱区资源与环境, 2015, 29(2): 43-48. [43] 谢国辉, 李晓东, 周立平, 等. 气候因子影响天山北坡植被指数时空分布研究. 地球科学进展, 2007, 22(6): 618-624. [44] 景辉, 张步廉, 赵永卫. 新疆草地现状、退化原因及治理对策. 新疆畜牧业, 2010, (9): 58-61. [45] 任朝霞, 杨达源. 近50a西北干旱区气候变化趋势及荒漠化的影响. 干旱区资源与环境, 2008, 22(4): 91-95. [46] 梁瀛, 努尔古丽, 帕尔哈特, 等. 新疆北疆林区森林火灾与气象因子的相关分析. 森林防火, 2010, 4: 23-26. [47] 梁瀛. 新疆山地森林灾害类型及防灾减灾途径. 新疆环境保护, 1996, 18(3): 60-62. [48] 陈云浩, 李晓兵, 史培军. 1983-1992年中国陆地NDVI变化的气候因子驱动分析. 植物生态学报, 2001, 25(6): 716-720. [49] 丁涛, 李远, 刘艳. 巴音布鲁克草原主要植被NDVI变化与气候因子的关系. 遥感应用, 2009, 1: 53-59. [50] 李新华. 影响新疆南部地区环境变化的因素分析. 干旱区研究, 2012, 29(3): 534-540. [51] 张戈丽, 徐兴良, 周才平, 等. 近30年来呼伦贝尔地区草地植被变化对气候变化的响应. 地理学报, 2011, 66(1): 47-58. [13] Grayston S J, Wang S, Campbell C D, et al . Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biochemistry, 1998, 30: 369-378. [14] Stephan A, Meyer A H, Schmid B. Plant diversity affects culturable soil bacteria in experimental grassland communities. Journal of Ecology, 2000, 22: 988-998. [15] Yao T, Ma L P, Zhang D G. Research progress on microbiological ecology of rangeland in China. Pratacultural Science, 2005, 22(11): 1-7. [16] Li F R, Zhao W Z, Liu J L, et al . Degraded vegetation and wind erosion influence soil carbon, nitrogen and phosphorus accumulation in sandy grasslands. Plant and Soil, 2009, 317(1/2): 79-92. [17] Sun W Y, Shao Q Q, Liu J Y, et al . The variation characteristics of soil organic carbon of typical alpine slope grasslands and its influencing factors in the “Three-River Headwaters” region. Journal of Natural Resources, 2011, 26(12): 2072-2087. [18] Wang J B, Huang M, Lin X H. Review on carbon budget of the grassland ecosystems on the Qinghai-Tibet Plateau. Progress in Geography, 2012, 31(1): 123-128. [19] Wang C T, Long R J, Wang Q L, et al . Changes in soil organic carbon and microbial biomass carbon at different degradation successional stages of alpine meadows in the Headwater Region of Three Rivers in China. China Journal of Appllied Environment Biology, 2008, 14(2): 225-230. [20] Feng R Z, Zhou W H, Long R J, et al . Characteristics of soil physical, chemical and biological properties on degraded alpine meadows in the Headwater Areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau. Chinese Journal of Soil Science, 2010, 41(2): 263-269. [21] Geng Y H, Zhang T Y, Wang H F. A preliminary report on soil dematiaceous hyphomycetes from the three river gorge regions in eastern Tibet. Mycosystema, 2008, 27(1): 39-47. [22] Li Z H, Luo Y M, Teng Y. Soil and Environmental Microbiology Research Method[M]. Beijing: Science Press, 2008: 90-114. [23] Lu G X, Chen X R, Yang C D, et al . Identification of cellulose decomposing fungi strain F 1 and decomposition activity to two kinds of lawn grass litter. Acta Prataculturae Sinica, 2011, 20(6): 170-179. [24] Lloyd H, Zar J H, Karr J R. On the calculation of information-theoretical measures of diversity. The American Midland Naturalist, 1968, 79(2): 257-272. [25] Pielou E C. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 1966, 13: 131-144. [26] Levins R. Evolution in Changing Environments[M]. Princeton, N J: Princeton University Press, 1968. [27] Jaccard P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles, 1901, 37: 547-579. [28] Tang Q Y, Feng M G. Practical Statistical Analysis and DPS Data Processing System[M]. Beijing: Science Press, 2002. [29] Pang X F, You M S. Insect Community Ecology[M]. Beijing: China Agriculture Press, 1996: 1-147. [30] Reichle D E. The role of siol invertebrates in nutrient cycling. In: Lohm U T, Presson. Soil Organism of Ecosystems[M]. Stockholm: Ecology Bulletin, 1977: 145-156. [31] Buée M, Reich M, Murat C, et al . 454-pyrosequencing analyses of forest soils reveals unexpectedly high fungal diversity. New Phytologist, 2009, 184: 449-456. [32] Anderson J P E, Domsch K H. Physiological method for quantitative measurement of microbial biomass in soils. Soil Biology & Biochemistry, 1978, 10: 215-221. [33] Jenkinson D S, Ladd J N. Microbial biomass in soil:Measurement and turnover. In: Paul E A. Soil Biochemistry[M]. New York: Marcel Dekker, 1981: 415-471. [34] Dodd J C, Boddington C L, Rodriguez A, et al . Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant and Soil, 2000, 226: 131-151. [35] Xiao H L, Zheng X J. Effects of plant diversity on soil microbes. Soil and Environmental Sciences, 2001, 10(3): 238-241. [36] Liu Z W, Duan E J, Gao W J, et al . Effects of leaf litter replacement on soil biological and chemical characteristics in main artificial forests in Qinling Mountains. Chinese Journal of Applied Ecology, 2008, 19(4): 704-710. [37] Pan H Q, Zhang T Y, Huang Y H, et al . Diversity and niche of soil moniliaceous hyphomycetes in Taibai Mountain. Chinese Journal of Applied Ecology, 2009, 20(2): 363-369. [38] Yao X M, Lv G Z, Yang H, et al . Studies of fungal flora in forest soil of Changbai mountains. Journal of Fungal Research, 2007, 5(1): 43-46. [39] Zhang J Z, Chen X R, Yang C D, et al . A study on the diversity of soil cultured fungi in the alpine grassland of Eastern Qilian Mountains. Acta Prataculturae Sinica, 2010, 19(2): 124-132. [40] Ding L L, Qi B, Shang Z H, et al . Dynamics of different soil microbial physiological groups and their relationship to soil conditions under sub-alpine grasslands vegetation in the eastern-Qilian mountain. Acta Prataculturae Sinica, 2007, 16(2): 9-18. [41] Costa R, Gltz M, Mrotzek N, et al . Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiology Ecology, 2006, 56(2): 236-249. [42] Daniel G F, Nilsson T, Singh A P. Degradation of lignocellulosics by unique tunnel-forming bacteria. Canadian Journal of Microbiology, 1987, 33: 943-948. [43] Hansen R A. Red oak litter promotes amicroarthropod functional group that accelerates its decomposition. Plant and Soil, 1999, 209: 37-45. [44] Wardle D A, Bardgett R D, Klironomos J N, et al . Ecological linkages between aboveground and belowground biota. Science, 2004, 304: 1629-1633. [45] Rong L, Li X W, Zhu T H, et al . Varieties of soil microorganisms decomposing Betula luminifera fine roots and Hemarthria compressa roots. Acta Prataculturae Sinica, 2009, 18(4): 117-124. [46] Xia B C, Zhou J Z, Tiedje J M. Effect of vegetation on structure of soil microbial community. Chinese Journal of Applied Ecology, 1998, 9(3): 296-300. [47] Hortan T R, Bruns T D. The molecular revolution in ectomycorrhizal ecology: Peeking into the black-box. Molecular Ecology, 2001, 10: 1855-1871. [48] Loranger-Merciris G, Barthes L, Gastine A, et al . Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems. Soil Biology & Biochemistry, 2006, 38: 2336-2343. [49] He X Y, Wang K L, Yu Y Z, et al . There sponses of soil microbial taxonomic diversity on vegetation communities and seasons in karst area. Acta Ecologica Sinica, 2009, 29(4): 1763-1769. [50] Garbeva P, Van Veen J A, Van Elsas J D. Microbial diversity in soil:Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 2004, 42: 243-270. [51] Xu G H, Li Z G. Microbial Ecology[M]. Nanjing: Southeast University Press, 1991: 104-111. [52] Rong J M, Sun B. Effects of climate conditions and soil type on aerobic cellulose degrading bacteria. Soil, 2012, 44(1): 84-89. [53] Zhang C B, Jin Z X, Li J M. Diversity of bacterial physiological groups and microbial flora in the soil of eight forest types of Tiantai Mountain, Zhejiang. Biodiversity Science, 2001, 9(4): 382-388. [54] Xiao J Y, Zhang L, Xie D T, et al . Study on the relationship between soil microbes and soil fertility in paddy fields of long-tern no-tillage and ridge culture. Journal of Southwest Agricultural University, 2002, 24(1): 82-85. [55] Zhang J E, Liu W G, Hu G. The relationship between quantity index of soil microorganisms and soil fertility of different land use systems. Soil and Environmental Sciences, 2002, 11(2): 140-143. [56] Wang Q L, Cao G M, Wang C T. Quantitative characters of soil microbes and microbial biomass under different vegetations in alpine meadow. Chinese Journal of Ecology, 2007, 26(7): 1002-1008. [57] Ma L P, Zhang D G, Yao T. Study on the dynamics of soil cellulose decomposer in alpine grassland under disturbance in Tianzhu. Grassland and Turf, 2005, (1): 29-33. [58] Hibbett D S, Ohman A, Glotzer D, et al . Progress in molecular and morphological taxon discovery in fungi and options for formal classification of environmental sequences. Fungal Biology Review, 2011, 25: 38-47. [59] Waid J S. Does soil biodiversity depend upon metabiotic activity and influences. Applied Soil Ecology, 1999, 13: 151-158. [60] Ritchie N J, Schutter M E, Dick R P, et al . Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Applied and Environmental Microbiology, 2000, 66: 1668-1675. [61] Walter K D, Margaret K B, Courmey S C, et al . Biological properties of soil and subsurface sedimens under abandoned pasture and cropland. Soil Biology & Biochemistry, 1997, 2(7): 837-946. [62] Garcia C, Hemandez T, Costa F. Microbial activity in soil under Mediterranean environmental conditions. Soil Biology & Biochemistry, 1994, 26: 1185-1191. [63] Tiquia S M, Lloyd J, Herms D A, et al . Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes. Applied Soil Ecology, 2002, 21: 31-48. [64] O’Donnell A G, Seasman M, Macrae A, et al . Plants and fertilizers as drivers of changes in microbial community structure and function in soils. Plant and Soil, 2001, 232: 135-145. [65] Bååth E, Anderson A H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLF-based techniques. Soil Biology & Biochemistry, 2003, 35: 955-963. [66] Rousk J, Bååth E, Brookes P C, et al . Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 2010, 4: 1340-1351. [67] Zinger L, Shahnavaz B, Baptis F, et al . Microbial diversity in alpine tundra soils correlates with snow cover dynamics. ISME Journal, 2009, 3: 850-859. [68] Deslippe J R, Hartmann M, Simard S W, et al . Long-term warming alters the composition of Arctic soil microbial communities. FEM Microbiology Ecology, 2012, 1: 1-13. [69] Schadt C W, Martin A P, Lipson D A, et al . Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science, 2003, 301: 1359-1361. [70] Toberman H, Freeman C, Evans C, et al . Summer drought decreases soil fungal diversity and associated phenol xidase activity in upland Calluna heathland soil. FEM Microbiology Ecology, 2008, 66: 426-436. [1] 贺金生, 王政权, 方精云. 全球变化下的地下生态学:问题与展望. 科学通报, 2004, 49(13): 1226-1233. [6] 杨成德, 龙瑞军, 陈秀蓉. 土壤微生物功能群及其研究进展. 土壤通报, 2008, 39(2): 421-424. [15] 姚拓, 马丽萍, 张德罡. 我国草地土壤微生物生态研究进展及浅评. 草业科学, 2005, 22(11): 1-7. [17] 孙文义, 邵全琴, 刘纪远, 等. 三江源典型高寒草地坡面土壤有机碳变化特征及其影响因素. 自然资源学报, 2011, 26(12): 2072-2087. [18] 王军邦, 黄玫, 林小惠. 青藏高原草地生态系统碳收支研究进展. 地理科学进展, 2012, 31(1): 123-128. [19] 王长庭, 龙瑞军, 王启兰, 等. 三江源区高寒草甸不同退化演替阶段土壤有机碳和微生物量碳的变化. 应用与环境生物学报, 2008, 14(2): 225-230. [20] 冯瑞章, 周万海, 龙瑞军, 等. 江河源区不同退化程度高寒草地土壤物理、化学及生物学特征研究. 土壤通报, 2010, 41(2): 263-269. [22] 李振高, 骆永明, 腾应. 土壤与环境微生物研究法[M]. 北京: 科学出版社, 2008: 90-114. [23] 芦光新, 陈秀蓉, 杨成德, 等. 1株纤维素分解菌的鉴定及对两种草坪草凋落物分解活性的研究. 草业学报, 2011, 20(6): 170-179. [28] 唐启元, 冯明光. 实用统计分析及其DPS数据处理系统[M]. 北京: 科学出版社, 2002. [29] 庞雄飞, 尤民生. 昆虫群落生态学[M]. 北京: 中国农业出版社, 1996: 1-147. [36] 刘增文, 段而军, 高文俊, 等. 秦岭山区人工林地枯落叶客置对土壤生物化学性质的影响. 应用生态学报, 2008, 19(4): 704-710. [37] 潘好芹, 张天宇, 黄悦华, 等. 太白山土壤淡色丝孢真菌群落多样性及生态位. 应用生态学报, 2009, 20(2): 363-369. [38] 姚贤民, 吕国忠, 杨红, 等. 长白山森林土壤真菌区系研究. 菌物研究, 2007, 5(1): 43-46. [39] 张俊忠, 陈秀蓉, 杨成德, 等. 东祁连山高寒草地土壤可培养真菌多样性分析. 草业学报, 2010, 19(2): 124-132. [40] 丁玲玲, 祁彪, 尚占环, 等. 东祁连山亚高山草地土壤微生物功能群数量动态及其与土壤环境关系. 草业学报, 2007, 16(2): 9-18 [45] 荣丽, 李贤伟, 朱天辉, 等. 光皮桦细根与扁穗牛鞭草草根分解的土壤微生物数量及优势类群. 草业学报, 2009, 18(4): 117-124. [46] 夏北成, Zhou J Z, Tiedje J M. 植被对土壤微生物群落结构的影响. 应用生态学报, 1998, 9(3): 296-300. [49] 何寻阳, 王克林, 于一尊, 等. 岩溶区植被和季节对土壤微生物遗传多样性的影响. 生态学报, 2009, 29(4): 1763-1769. [51] 许光辉, 李振高. 微生物生态学[M]. 南京: 东南大学出版社, 1991: 104-111. [52] 荣娟敏, 孙波. 水热条件和土壤类型对纤维素分解菌的影响. 土壤, 2012, 44(1): 84-89. [53] 张崇邦, 金则新, 李均敏. 浙江天台山不同林型土壤环境的微生物区系和细菌生理群的多样性. 生物多样性, 2001, 9(4): 382-388. [54] 肖剑英, 张磊, 谢德体, 等. 长期免耕稻田的土壤微生物与肥力关系研究. 西南农业大学学报, 2002, 24(1): 82-85. [55] 章家恩, 刘文高, 胡刚. 不同土地利用方式下土壤微生物数量与土壤肥力的关系. 土壤与环境, 2002, 11(2): 140-143. [56] 王启兰, 曹广民, 王长庭. 高寒草甸不同植被土壤微生物数量及微生物生物量的特征. 生态学杂志, 2007, 26(7): 1002-1008. [57] 马丽萍, 张德罡, 姚拓. 高寒草地不同扰动生境纤维素分解菌数量动态研究. 草原与草坪, 2005, (1): 29-33. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||