欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2016, Vol. 25 ›› Issue (3): 77-85.DOI: 10.11686/cyxb2015219

• 研究论文 • 上一篇    下一篇

我国北方9份旱生-沙生植物蒙古冰草遗传多样性研究

李晓全1, 2, 高有汉1, 刘扬1, 索培芬1, 韩冰1, 2, *   

  1. 1.内蒙古农业大学生命科学学院,内蒙古 呼和浩特 010010;
    2.中国农业科学院草原研究所,内蒙古 呼和浩特 010010
  • 收稿日期:2015-04-24 出版日期:2016-03-20 发布日期:2016-03-20
  • 通讯作者: E-mail:hb_nmg@163.com
  • 作者简介:李晓全(1991-),男,河北衡水人,在读硕士.E-mail:1206966950@qq.com
  • 基金资助:
    国家自然科学基金(31060057),中国科学院西部之光"人才培养"项目匹配经费和中国农业科学院草原研究所农业科技创新工程资助

The genetic diversity of 9 populations of dry-desert Agropyron mongolicum collected in northern China

LI Xiao-Quan1, 2, GAO You-Han1, LIU Yang1, SUO Pei-Fen1, Han Bing1, 2, *   

  1. 1.College of Life Sciences Inner Mongolia Agricultural University, Hohhot 010010, China;
    2.Grassland Research Institute of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
  • Received:2015-04-24 Online:2016-03-20 Published:2016-03-20

摘要: 蒙古冰草因其抗寒,抗旱特性,是欧亚大陆荒漠草原优势植物之一.本文从染色体倍性及SSR序列长度多态性两个方面对采自中国北方境内的9个蒙古冰草居群进行遗传多样性分析,发现9个蒙古冰草居群染色体基数为7,均为二倍体,在染色体倍性方面不具有多态性;共采用138对小麦SSR引物进行扩增分析,共有21对引物扩增出特异性条带,SSR引物筛选率15.2%.共扩增出特异性条带119条,平均每对引物扩增出特异性条带5.6条,SSR序列长度多态性丰富.利用POPGEN 32软件计算9个蒙古冰草居群遗传多样性指标,居群P8遗传多样性程度最低,居群P3最高.AMOVA分析显示,蒙古冰草的遗传差异主要是来自居群内个体之间.UPGMA方法聚类分析,在遗传相似系数为0.80时,9个居群被分为三大类,居群P1~P6一类,居群P7,P8为第二类,P9被单独分为一类.本研究为了解蒙古冰草遗传背景及加速其资源的合理开发利用奠定了理论基础.

Abstract: Agropyron mongolicum is one of the dominant species in desert steppe across Eurasia, due primarily to its cold and drought resistance. In this study, we analyzed chromosome polymorphism and DNA polymorphism in 9 populations of A. mongolicum in northern China. The chromosome number of the 9 populations was 7. Cells were diploid and showed no polymorphism in chromosome ploidy. A total of 138 pairs of wheat SSR primers were amplified and analyzed. A total of 21 primer pairs were amplified with specific fragments. The screening rate of SSR primers was 15.2%. A total of 119 specific bands were amplified: specificity was 5.6 and the polymorphism of DNA was rich. POPGEN 32 software was used to calculate the genetic diversity of the 9 populations of A. mongolicum. Population P8 was found to have the least level of diversity, while P3 had the highest. AMOVA software was used to analyze genetic differentiation, indicating that genetic differences come mainly from individuals in the populations. The UPGMA method was used for a cluster analysis of the 9 populations. When the genetic similarity coefficient is 0.80, the materials tested divided into three groups: P1-P6, P7-P8 and P9. This paper lays the foundation for the development and utilization of new varieties of A. mongolicum.