[1] Kahlon T S, Chapman M H, Smith G E. In vitro binding of bile acids by okra, beets, asparagus, eggplant, turnips, green beans, carrots and cauliflower. Food Chemistry, 2007, 103(2): 676-680. [2] Zeng R Q, Hong J J,Yao Y F, et al . Biological characteristics and ecological adaptability evaluation of okra resources. Chinese Journal of Tropical Crops, 2015, 36(3): 523-529. [3] Gao L, Liu D F, Xu L. Research progress and prospects of okra. Chinese Journal of Tropical Agriculture, 2014, 34(11): 22-29. [4] Liu Z W, Sun L, Fang T T, et al . Effects of different light qualities on growth and physiological characteristics of tomato seedlings. Acta Agriculturae Boreali-Sinica, 2015, 30(5): 141-145. [5] Pu G B, Liu S Q, Liu L, et al . Effects of different light qualities on growth and physiological characteristics of tomato seedlings. Acta Horticulturae Sinica, 2005, 32(3): 420-425. [6] Liu M, Zhao Q, Wang X J, et al . Plant photoreceptors and regulation mechanism. Bulletin of Biology, 2005, 40(5): 10-12. [7] Senger H. The effect of blue light on plants and microorganisms. Photochemistry Photobiology, 1982, 35: 911-920. [8] Xu J Z, Li T K, Ge D Y, et al . Study advances on selective absorption to light wavelengths in the development of plants. Hebei Journal of Forestry and Orchard Research, 2002, 17(2): 180-184. [9] Li H M, Lu X M. Effects of light quality on the quality of broad bean ( Vicia faba Linn.) sprouts. Auhui Agricultural Science Bulletin, 2013, 19(10): 26, 89. [10] Cui J, Ma Z H, Xu Z G, et al . Effects of supplemental lighting with different light qualities on growth and physiological characteristics of cucumber, pepper and tomato seedlings. Acta Horticulturae Sinica, 2009, 36(5): 663-670. [11] Brown C S, Schuerger A C, Sager J C. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. Journal of the American Society for Horticultural Science, 1995, 120: 808-813. [12] Chen W H, Xu Z G, Liu X Y, et al . Effect of LED light source on the growth and quality of different lettuce varieties. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(7): 1434-1440. [13] Li H M, Lu X M. Growth and physiological characteristics of rapeseed seedlings under different light quality. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(11): 2251-2257. [14] Guo Y S, Gu A S, Cui J. Effects of light quality on rice seedlings growth and physiological characteristics. Chinese Journal of Applied Ecology, 2011, 22(6): 1485-1492. [15] Shin K S, Murthy H N, Heo J W, et al . Induction of betalain pigmentation in hairy roots of red beet under different radiation sources. Biologia Plantarum, 2003, 47(1): 149-152. [16] Li H M, Tang C M, Xu Z G, et al . Effects of different light sources on the growth of non-heading Chinese cabbage ( Brassica rapa L.). Journal of Agriculture Science, 2012, 4(4): 262-273. [17] Wang T, Li W L, Gong F E, et al . Effects of different LED light qualities on growth and physiological characteristics of non-heading Chinese cabbage. Journal of Gansu Agricultural University, 2011, 46(4): 69-73. [18] Kim H H, Goins G H, Wheeler R M, et al . Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience, 2004, 39(7): 1617-1622. [19] Wu J S, Hu J Y, Zhou Q Z, et al . Influence of illumination supplement used a LED light on growth and photosynthesis of radish. Northern Horticulture, 2009, 10: 30-33. [20] Li H M, Xu Z G, Tang C M. Effect of light-emitting diodes on growth and morphogenesis of upland cotton ( Gossypium hirsutum L.) seedling in vitro . Plant Cell Tissue Organ and Culture, 2010, 103: 155-163. [21] Chang T T, Liu X Y, Xu Z G, et al . Effects of light spectral energy distribution on growth and development of tomato seedlings. Scientia Agricultura Sinica, 2010, 43(8): 1748-1756. [22] Ma S Y, Li S, Niu J Y, et al . Effects of different LED light on physiological and biochemical characters of grape rootstock plantlets. Journal of Gansu Agricultural University, 2010, 45(5): 56-62. [23] Heo J W, Lee C W, Chakrabarty D, et al . Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light emitting diode (LED). Plant Growth Regulation, 2002, 38: 225-230. [24] Poudel P R, Kataoka I, Mochioka R. Effect of red and blue light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue and Organ Culture, 2008, 92: 147-153. [25] Li H M, Tang C M, Xu Z G. Effect of light emitting diodes on growth and morphogenesis of Rapeseed ( Brassica napus L) plantlets in vitro . Scientia Horticulturae, 2013, 150: 117-124. [26] Kim S J, Hahn E J, Heo J W, et al . Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro . Scientia Horticulturae, 2004, 101: 143-151. [27] Zhang Z X, Wang P L, Liu S Q, et al . Vegetable Physiology[M]. Beijing: China Agricultural Science and Technology Press, 1993. [28] Wang X K. Principles and Techniques of Plant Physiology and Biochemistry Experiment (Second Edition)[M]. Beijing: Higher Education Press, 2006: 130. [29] Zeng B, Wang Q Y, Tang C M. Anatomic analysis on heterosis in three transgenic Bt pest-resistant hybrid cotton ( G. hirsutum L.). Acta Agronomica Sinica, 2008, 34(3): 496-505. [30] Smith H. Phytochromes and light signal perception by plants-an emerging synthesis. Nature, 2000, 407: 585-591 [31] Quail P H. Phytochrome photosensory signaling networks. Nature Reviews Molecular Cell Biology, 2002, 3: 85-93. [32] Wang H, Deng X W. Dissecting the phytochrome A-dependent signaling network in higher plants. Trends in Plant Science, 2003, 8: 172-178. [33] Yang Q C. Application and prospect of light-emitting diode (LED) in agriculture and bio-industry. Journal of Agricultural Science and Technology, 2008, 10(6): 42-47. [34] Li H S. Modern Plant Physiology (Third Edition)[M]. Beijing: Higher Education Press, 2012: 45-46. [35] Yuan L M, Qiu M, Wang P, et al . Structure characteristics of stomata in leaves and vascular bundles in culms of transgenic rice expressing C 4 photosynthesis enzymes. Scientia Agricultura Sinica, 2006, 39(5): 902-909. [36] Kinoshita T, Doi M, Suetsugu N, et al . Phot 1 and phot 2 mediate blue light regulation of stomatal opening. Nature, 2001, 414: 656-660. [37] Doi M, Shigenaga A, Emi T, et al . A transgene encoding a blue-light receptor, phot1, restores blue light responses in the Arabidopsis phot1phot2 double mutant. Journal of Experimental Botany, 2004, 55: 517-523. [38] Shimazaki K, Doy M, Assmann S M, et al . Light regulation of stomatal movement. Annual Review of Plant Biology, 2007, 58: 219-247. [39] Outlaw J R, William H. Integration of cellular and physiological functions of guard cells. Critical Reviews Plant Sciences, 2003, 22: 503-529. [40] Kraepiel Y, Mipiniac E. Photomorphogenesis and phytohormones. Plant Cell and Environment, 1997, 20: 807-812. [41] Su T X, Yang Z Q, Huang H J, et al . Effect of light quality on stomatal conductance of sweet pepper in greenhouse. Arid Meteorology, 2010, 28(4): 443-448. [42] Lawrence D T, Ganke N, Arise O. Green light reversal of blue light stimulated stomatal opening is found in a diversity of plant species. American Journal of Botany, 2002, 89(2): 366-368. [2] 曾日秋, 洪建基, 姚运法, 等. 黄秋葵资源的植物学特征特性与生态适应性评价. 热带作物学报, 2015, 36(3): 523-529. [3] 高玲, 刘迪发, 徐丽. 黄秋葵研究进展与前景. 热带农业科学, 2014, 34(11): 22-29. [4] 刘振威, 孙丽, 方婷婷, 等. 不同光质及组合对番茄幼苗生长及生理特性的影响. 华北农学报, 2015, 30(5): 141-145. [5] 蒲高斌, 刘世琦, 刘磊, 等. 不同光质对番茄幼苗生长和生理特性的影响. 园艺学报, 2005, 32(3): 420-425. [6] 刘明, 赵琦, 王小菁, 等. 植物的光受体及其调控机制的研究. 生物学通报, 2005, 40(5): 10-12. [8] 徐景致, 李同凯, 葛大勇, 等. 植物生长发育对光波段选择性吸收的研究进展. 河北林果研究, 2002, 17(2): 180-184. [9] 李慧敏, 陆晓民. 不同光质对大叶蚕豆芽苗菜品质的影响. 安徽农学通报, 2013, 19(10): 26, 89. [10] 崔瑾, 马志虎, 徐志刚, 等. 不同光质补光对黄瓜、辣椒和番茄幼苗生长及生理特性的影响. 园艺学报, 2009, 36(5): 663-670. [12] 陈文昊, 徐志刚, 刘晓英, 等. LED光源对不同品种生菜生长和品质的影响. 西北植物学报, 2011, 31(7): 1434-1440. [13] 李慧敏, 陆晓民. 不同光质对甘蓝型油菜幼苗的生长和生理特性的影响. 西北植物学报, 2015, 35(11): 2251-2257. [14] 郭银生, 谷艾素, 崔瑾. 光质对水稻幼苗生长及生理特性的影响. 应用生态学报, 2011, 22(6): 1485-1492. [17] 王婷, 李雯琳, 巩芳娥, 等. LED光源不同光质对不结球白菜生长及生理特性的影响. 甘肃农业大学学报, 2011, 4: 69-73. [19] 吴家森, 胡君艳, 周启忠, 等. LED灯补光对萝卜生长及光合特性的影响. 北方园艺, 2009, 10: 30-33. [21] 常涛涛, 刘晓英, 徐志刚, 等. 不同光谱能量分布对番茄幼苗生长发育的影响. 中国农业科学, 2010, 43(8): 1748-1756. [22] 马绍英, 李胜, 牛俊义, 等. LED不同光质对葡萄砧木试管苗生理生化特性的影响. 甘肃农业大学学报, 2010, 45(5): 56-62. [27] 张振贤, 王培伦, 刘世奇, 等. 蔬菜生理[M]. 北京: 中国农业科技出版社, 1993. [28] 王学奎. 植物生理生化实验原理和技术(第二版)[M]. 北京: 高等教育出版社, 2006: 130. [29] 曾斌, 王庆亚, 唐灿明. 三个转Bt基因杂交棉杂种优势的解剖学分析. 作物学报, 2008, 34: 496-505. [33] 杨其长. LED在农业与生物产业的应用与前景展望. 中国农业科技导报, 2008, 10(6): 42-47. [34] 李合生. 现代植物生理学(第3版)[M]. 北京: 高等教育出版社, 2012: 45-46. [35] 袁莉民, 仇明, 王朋, 等. C 4 转基因水稻秧苗叶片气孔与叶鞘维管束结构特征. 中国农业科学, 2006, 39(5): 902-909. [41] 苏天星, 杨再强, 黄海静, 等. 不同光质对温室甜椒气孔导度的影响. 干旱气象, 2010, 28(4): 443-448. |