草业学报 ›› 2012, Vol. 21 ›› Issue (5): 291-301.
王伟光,王显国*
收稿日期:
2011-10-18
出版日期:
2012-05-25
发布日期:
2012-10-20
通讯作者:
E-mail:grasschina@126.com
作者简介:
王伟光(1988-),男,安徽蚌埠人,在读本科。E-mail:bbweiweiw@163.com
基金资助:
WANG Wei-guang, WANG Xian-guo
Received:
2011-10-18
Online:
2012-05-25
Published:
2012-10-20
摘要: 禾本科植物叶的形态发育在细胞尺度上遵循着严格的动力学规律,其在环境影响下的可塑性是禾本科植物叶片环境适应性的细胞学基础。近年来,禾本科植物叶形态发育的动力学分析方法已经成为植物生长发育及环境适应性研究中一类重要的辅助研究工具。简介了禾本科植物多阶段动力学模型的一般建模思想,并结合国外研究现状,从植物叶形态发育可塑性的角度简短分析了环境影响下禾本科植物叶发育适应性过程中宏观与微观尺度下的动力学机制,有望对国内今后开展该领域的研究提供有益的参考作用。
中图分类号:
王伟光,王显国. 禾本科植物叶形态发育的多阶段动力学模型[J]. 草业学报, 2012, 21(5): 291-301.
WANG Wei-guang, WANG Xian-guo. Multi-phase kinematic analysis of Gramineae leaf development[J]. Acta Prataculturae Sinica, 2012, 21(5): 291-301.
[1] Schnyder H, Kavanova M, Nelson C J. Kinematic analysis of leaf growth in grasses: a comment on spatial and temporal quantitative analysis of cell division and elongation rate in growing wheat leaves under saline conditions[J]. Journal of Integrative Plant Biology, 2009, 51(5): 433-436, 437. [2] Tardieu F, Granier C. Quantitative analysis of cell division in leaves: methods, developmental patterns and effects of environmental conditions[J]. Plant Molecular Biology, 2000, 43(5-6): 555-567. [3] Tardieu F, Tuberosa R. Dissection and modelling of abiotic stress tolerance in plants[J]. Current Opinion in Plant Biology, 2010, 13(2): 206-212. [4] 王莺, 夏文韬, 梁天刚. 基于CASA模型的甘南地区草地净初级生产力时空动态遥感模拟[J]. 草业学报, 2011, 20(4): 316-324. [5] 储少林, 贠静, 阿斯娅·曼力克, 等. 克州地区天然草地生产力评价[J]. 草业科学, 2011, 28(1): 53-58. [6] Hillier J, Makowski D, Andrieu B. Maximum likelihood inference and bootstrap methods for plant organ growth via multi-phase kinetic models and their application to maize[J]. Annals of Botany, 2005, 96(1): 137-148. [7] Chickarmane V, Roeder A H, Tarr P T, et al. Computational morphodynamics: a modeling framework to understand plant growth[J]. Annual Review of Plant Biology, 2010, 61: 65-87. [8] Morris A, Silk W. Use of a flexible logistic function to describe axial growth of plants[J]. Bulletin of Mathematical Biology, 1992, 6(6): 1069-1081. [9] Volenec J J, Nelson C J. Cell dynamics in leaf meristems of contrasting tall fescue genotypes[J]. Crop Science, 1981, 21: 381-385. [10] Fournier C, Durand J L, Ljutovac S, et al. A functional-structural model of elongation of the grass leaf and its relationships with the phyllochron[J]. New Phytologist, 2005, 166(3): 881-894. [11] Taleisnik E, Rodriguez A A, Bustos D, et al. Leaf expansion in grasses under salt stress[J]. Journal of Plant Physiology, 2009, 166(11): 1123-1140. [12] Fuad-Hassan A, Tardieu F, Turc O. Drought-induced changes in anthesis-silking interval are related to silk expansion: a spatio-temporal growth analysis in maize plants subjected to soil water deficit[J]. Plant, Cell & Environment, 2008, 31(9): 1349-1360. [13] Parent B, Hachez C, Redondo E, et al. Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach[J]. Plant Physiology,2009, 149(4): 2000-2012. [14] Tonkinson C L, Lyndon R F, Arnold G M, et al. Effect of the Rht3 dwarfing gene on dynamics of cell extension in wheat leaves, and its modification by gibberellic acid and paclobutrazol[J]. Journal of Experimental Botany, 1995, 46(9): 1085-1092. [15] Tonkinson C L, Lyndon R F, Arnold G M, et al. The effects of temperature and the Rht3 dwarfing gene on growth, cell extension, and gibberellin content and responsiveness in the wheat leaf[J]. Journal of Experimental Botany, 1997, 48(4): 963-970. [16] Louarn G, Andrieu B, Giauffret C. A size-mediated effect can compensate for transient chilling stress affecting maize (Zea mays) leaf extension[J]. New Phytologist, 2010, 187(1): 106-118. [17] Rodriguez A A, Maiale S J, Menendez A B, et al. Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress[J]. Journal of Experimental Botany, 2009, 60(15): 4249-4262. [18] Palmer S J, Davies W J. An analysis of relative elemental growth rate, epidermal cell size and xyloglucan endotransglycosylase activity through the growing zone of ageing maize leaves[J]. Journal of Experimental Botany, 1996, 47(3): 339-347. [19] Vissenberg K, Fry S C, Pauly M, et al. XTH acts at the microfibril-matrix interface during cell elongation[J]. Journal of Experimental Botany, 2005, 56(412): 673-683. [20] Rymen B, Fiorani F, Kartal F, et al. Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes[J]. Plant Physiology, 2007, 143(3): 1429-1438. [21] Welcker C, Sadok W, Dignat G, et al. A common genetic determinism for sensitivities to soil water deficit and evaporative demand: meta-analysis of quantitative trait Loci and introgression lines of maize[J]. Plant Physiology, 2011, 157(2): 718-729. [22] Venkatachalam P, Jain A, Sahi S, et al. Molecular cloning and characterization of phosphate (Pi) responsive genes in Gulf ryegrass (Lolium multiflorum L.): a Pi hyperaccumulator[J]. Plant Molecular Biology, 2009, 69(1-2): 1-21. [23] Kavanova M, Lattanzi F A, Schnyder H. Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post-mitotic growth rates[J]. Plant, Cell & Environment, 2008, 31(6): 727-737. [24] Lorbiecke R, Steffens M, Tomm J M, et al. Phytosulphokine gene regulation during maize (Zea mays L.) reproduction[J]. Journal of Experimental Botany, 2005, 56(417): 1805-1819. [25] Richards F J. A flexible growth function for empirical use[J]. Journal of Experimental Botany, 1959, 10(2): 290-301. [26] Lafarge T, Tardieu F. A model co-ordinating the elongation of all leaves of a sorghum cultivar was applied to both Mediterranean and Sahelian conditions[J]. Journal of Experimental Botany, 2002, 53(369): 715-725. [27] Ortega L, Taleisnik E. Elongation growth in leaf blades of Chloris gayana under saline conditions[J]. Journal of Plant Physiology, 2003, 160(5): 517-522. [28] Schnyder H, Nelson C J, Coutts J H. Assessment of spatial distribution of growth in the elongation zone of grass leaf blades[J]. Plant Physiology, 1987, 85(1): 290-293. [29] Fiorani F, Beemster G T, Bultynck L, et al. Can meristematic activity determine variation in leaf size and elongation rate among four Poa species? A kinematic study[J]. Plant Physiology, 2000, 124(2): 845-856. [30] Durand J L, Schaufele R, Gastal F. Grass leaf elongation rate as a function of developmental stage and temperature: morphological analysis and modelling[J]. Annals of Botany, 1999, 83(5): 577-588. [31] Skinner R H, Nelson C J. Epidermal cell division and the coordination of leaf and tiller development[J]. Annals of Botany, 1994, 74(1): 9-16. [32] 缪祥辉. 春小麦叶片生长动力学模型及其解析[J]. 青海农林科技, 2005, 3: 4-7, 18. [33] 马培良, 丁维龙, 古辉. 基于OpenGL和双三次贝塞尔曲面的稻叶可视化建模[J]. 浙江工业大学学报, 2010, 38(1): 36-40. [34] 常丽英, 顾东祥, 张文宇, 等. 水稻叶片伸长过程的模拟模型[J]. 作物学报, 2008, 34(2): 311-317. [35] Macadam J W, Nelson C J. Specific leaf weight in zones of cell division, elongation and maturation in tall fescue leaf blades[J]. Annals of Botany, 1987, 59(4): 369-376. [36] Paolillo D J, Sorrells M E. The spatial distribution of growth in the extension zone of seedling wheat leaves[J]. Annals of Botany, 1992, 70(5): 461-470. [37] Casey I A, Brereton A J, Laidlaw A S, et al. Effects of sheath tube length on leaf development in perennial ryegrass (Lolium perenne L.)[J]. Annals of Applied Biology, 1999, 134(2): 251-257. [38] Schnyder H, Seo S, Rademacher I F, et al. Spatial distribution of growth rates and of epidermal cell lengths in the elongation zone during leaf development in Lolium perenne L.[J]. Planta, 1990, 181: 423-431. [39] 刘碧英,潘远智,赵杨迪. 沿阶草不同叶片对土壤铅胁迫的生理生化响应[J]. 草业学报, 2011, 20(4): 123-128. [40] Sylvester A W, Cande W Z, Freeling M. Division and differentiation during normal and liguleless-1 maize leaf development[J]. Development, 1990, 110(3): 985-1000. [41] Skinner R H, Rnelson J C. Elongation of the grass leaf and its relationship to the phyllochron: Symposium on the pyllochron[J]. Crop Science, 1995, 35(1): 4-10. [42] Carvalho D. Leaf morphogenesis and tillering behaviour in single plants and simulated swards of Guinea grass (Panicum maximum Jacq.) cultivars[D]. Palmerston North: Massey University, 2002. [43] Andrieu B, Hillier J, Birch C. Onset of sheath extension and duration of lamina extension are major determinants of the response of maize lamina length to plant density[J]. Annals of Botany, 2006, 98(5): 1005-1016. [44] Muller B, Reymond M, Tardieu F. The elongation rate at the base of a maize leaf shows an invariant pattern during both the steady-state elongation and the establishment of the elongation zone[J]. Journal of Experimental Botany, 2001, 52(359): 1259-1268. [45] Parent B, Conejero G, Tardieu F. Spatial and temporal analysis of non-steady elongation of rice leaves[J]. Plant, Cell & Environment, 2009, 32(11): 1561-1572. [46] Birch C J, Andrieu B, Fournier C, et al. Kinetics of leaf extension in maize: Parameterization for two tropically adapted cultivars planted on two dates at Gatton[J]. European Journal of Agronomy, 2007, 27(2-4): 215-224. [47] Prusinkiewicz P, Rolland-Lagan A G. Modeling plant morphogenesis[J]. Current Opinion in Plant Biology, 2006, 9(1): 83-88. [48] Schufele R, Schnyder H. Cell growth analysis during steady and non-steady growth in leaves of perennial ryegrass (Lolium perenne L.) subject to defoliation[J]. Plant, Cell & Environment, 2000, 23(2): 185-194. [49] Tardieu F, Reymond M, Hamard P, et al. Spatial distributions of expansion rate, cell division rate and cell size in maize leaves: a synthesis of the effects of soil water status, evaporative demand and temperature[J]. Journal of Experimental Botany, 2000, 51(3): 1505-1514. [50] Busso C A, Richards J H. Diurnal variation in the temperature response of leaf extension of two bunchgrass species in the field[J]. Plant, Cell & Environment, 1992, 15(7): 855-859. [51] Kemp D R, Blacklow W M. Diurnal extension rates of wheat leaves in relation to temperatures and carbohydrate concentrations of the extension zone[J]. Journal of Experimental Botany, 1980, 31(3): 821-828. [52] Macadam J W, Volenec J J, Nelson C J. Effects of nitrogen on mesophyll cell division and epidermal cell elongation in tall fescue leaf blades[J]. Plant Physiology, 1989, 89(2): 549-556. [53] Mcmaster G S, Wilhelm W W, Palic D B, et al. Spring wheat leaf appearance and temperature: extending the paradigm?[J]. Annals of Botany, 2003, 91(6): 697-705. [54] Schnyder H, Nelson C J. Diurnal growth of tall fescue leaf blades: I. Spatial distribution of growth, deposition of water, and assimilate import in the elongation zone[J]. Plant Physiology, 1988, 86(4): 1070-1076. [55] Pereyra-Irujo G A, Velazquez L, Lechner L, et al. Genetic variability for leaf growth rate and duration under water deficit in sunflower: analysis of responses at cell, organ, and plant level[J]. Journal of Experimental Botany, 2008, 59(8): 2221-2232. [56] 景艳霞, 袁庆华. NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响[J]. 草业学报, 2011, 20(2): 134-139. [57] Beemster G T S, Masle J. Effects of soil resistance to root penetration on leaf expansion in wheat (Triticum aestivum L.): composition, number and size of epidermal cells in mature blades[J]. Journal of Experimental Botany, 1996, 47(11): 1651-1662. [58] Beemster G T S, Masle J, Williamson R E, et al. Effects of soil resistance to root penetration on leaf expansion in wheat (Triticum aestivum L.): kinematic analysis of leaf elongation[J]. Journal of Experimental Botany, 1996, 47(11): 1663-1678. [59] Hu Y, Schmidhalter U. Spatial and temporal quantitative analysis of cell division and elongation rate in growing wheat leaves under saline conditions[J]. Journal of Integrative Plant Biology, 2008, 50(1): 76-83. [60] Ortega L, Fry S C, Taleisnik E. Why are Chloris gayana leaves shorter in salt-affected plants? Analyses in the elongation zone[J]. Journal of Experimental Botany, 2006, 57(14): 3945-3952. [61] Lacerda C F, Cambraia J, Oliva M A, et al. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress[J]. Environmental and Experimental Botany, 2003, 49: 107-120. [62] Gastal F, Dawson L A, Thornton B. Responses of plant traits of four grasses from contrasting habitats to defoliation and N supply[J]. Nutrient Cycling In Agroecosystems, 2010, 88: 245-258. [63] Volenec J J, Nelson C J. Responses of tall fescue leaf meristems to nitrogen fertilization and harvest frequency[J]. Crop Science, 1983, 23: 720-724. [64] Fournier C, Andrieu B. Dynamics of the elongation of internodes in maize (Zea mays L.): analysis of phases of elongation and their relationships to phytomer development[J]. Annals of Botany, 2000, 86(3): 551-563. [65] Duru M, Ducrocq H. Growth and senescence of the successive leaves on a cocksfoot tiller. effect of nitrogen and cutting regime[J]. Annals of Botany, 2000, 85(5): 645-653. [66] Ben-Haj-Salah H, Tardieu F. Temperature affects expansion rate of maize leaves without change in spatial distribution of cell length (analysis of the coordination between cell division and cell expansion)[J]. Plant Physiology, 1995, 109(3): 861-870. [67] Schuppler U, He P H, John P C, et al. Effect of water stress on cell division and cell-division-cycle 2-like cell-cycle kinase activity in wheat leaves[J]. Plant Physiology, 1998, 117(2): 667-678. [68] Granier C, Tardieu F. Water deficit and spatial pattern of leaf development. Variability in responses can be simulated using a simple model of leaf development[J]. Plant Physiology, 1999, 119(2): 609-620. [69] Granier C, Tardieu F. Leaf expansion and cell division are affected by reducing absorbed light before but not after the decline in cell division rate in the sunflower leaf[J]. Plant, Cell & Environment, 1999, 22(11): 1365-1376. [70] Moses L, Ougham H J, Francis D. The effect of the slow-to-green mutation on cell division during leaf initiation and early leaf growth in Lolium temulentum[J]. New Phytologist, 1997, 135(1): 51-57. [71] Kavanova M, Lattanzi F A, Grimoldi A A, et al. Phosphorus deficiency decreases cell division and elongation in grass leaves[J]. Plant Physiology, 2006, 141(2): 766-775. [72] Francis D, Davies M S, Barlow P W. A strong nucleotypic effect on the cell cycle regardless of ploidy level[J]. Annals of Botany, 2008, 101(6): 747-757. [73] Doerner P W. Cell cycle regulation in plants[J]. Plant Physiology, 1994, 106(3): 823-827. [74] Granier C, Tardieu F. Spatial and temporal analyses of expansion and cell cycle in sunflower leaves. A common pattern of development for all zones of a leaf and different leaves of a plant[J]. Plant Physiology, 1998, 116(3): 991-1001. [75] Stern B, Nurse P. A quantitative model for the cdc2 control of S phase and mitosis in fission yeast[J]. Trends in Genetics, 1996, 12(9): 345-350. [76] Mironov V V, De Veylder L, Van Montagu M, et al. Cyclin-dependent kinases and cell division in plants-the nexus[J]. Plant Cell, 1999, 11(4): 509-522. [77] Granier C, Inze D, Tardieu F. Spatial distribution of cell division rate can be deduced from that of p34(cdc2) kinase activity in maize leaves grown at contrasting temperatures and soil water conditions[J]. Plant Physiology, 2000, 124(3): 1393-1402. [78] Edelmann H G, Fry S C. Effect of cellulose synthesis inhibition on growth and the integration of xyloglucan into pea internode cell walls[J]. Plant Physiology, 1992, 100(2): 993-997. [79] Whitney S E, Gothard M G, Mitchell J T, et al. Roles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls[J]. Plant Physiology, 1999, 121(2): 657-664. [80] Van Sandt V S, Suslov D, Verbelen J P, et al. Xyloglucan endotransglucosylase activity loosens a plant cell wall[J]. Annals of Botany, 2007, 100(7): 1467-1473. [81] Sloan J, Backhaus A, Malinowski R, et al. Phased control of expansin activity during leaf development identifies a sensitivity window for expansin-mediated induction of leaf growth[J]. Plant Physiology, 2009, 151(4): 1844-1854. [82] Choi D, Lee Y, Cho H T, et al. Regulation of expansin gene expression affects growth and development in transgenic rice plants[J]. Plant Cell, 2003, 15(6): 1386-1398. [83] Schufele R, Schnyder H. Carbon and nitrogen deposition in expanding tissue elements of perennial ryegrass (Lolium perenne L.) leaves during non-steady growth after defoliation[J]. Plant, Cell & Environment, 2001, 24(4): 407-417. [84] Gastal F, Nelson C J. Nitrogen use within the growing leaf blade of tall fescue[J]. Plant Physiology, 1994, 105(1): 191-197. [85] 马银山,张世挺. 植物从个体到群落水平对放牧的响应[J]. 生态学杂志, 2009, 28(1): 113-121. |
[1] | 王成聪,高素萍,黄丽,林啸,张硕,雷霆. 模拟酸雨与Cd对紫萼膜脂过氧化及形态特征的影响[J]. 草业学报, 2014, 23(6): 336-341. |
[2] | 李中林,郭开秀,周守标,郑和权,刘坤. 光强对马兰形态、生理及黄酮类化合物含量的影响[J]. 草业学报, 2014, 23(4): 162-170. |
[3] | 郭红超,严成,魏岩. 木地肤的开花动态与花粉活力及柱头可授性研究[J]. 草业学报, 2014, 23(4): 87-93. |
[4] | 孙天航,刘玫,孙雪芹,程薪宇,茹剑. 东北委陵菜属植物叶形态结构的研究及其分类学价值的探讨[J]. 草业学报, 2014, 23(3): 75-84. |
[5] | 程薪宇,刘玫,张欣欣,王臣,李滨胜. 东北毛茛科植物营养器官结构及其系统学意义[J]. 草业学报, 2014, 23(3): 62-74. |
[6] | 杜明新,周向睿,周志宇,卢鑫,梁坤伦,周媛媛,陶晓慧. 毛乌素沙南缘紫穗槐根系垂直分布特征[J]. 草业学报, 2014, 23(2): 125-132. |
[7] | 夏曾润,杜凤凤,李偲,张吉宇,刘勇,霍雅馨,孔令芳. 紫花苜蓿EMS突变体库的构建和形态学性状鉴定[J]. 草业学报, 2014, 23(2): 215-222. |
[8] | 孙雪芹,刘玫,孙天航,张欣欣,史传奇. 东北堇菜属植物叶形态结构的研究及其分类学价值的探讨[J]. 草业学报, 2014, 23(2): 223-234. |
[9] | 张欣欣,刘玫,程薪宇,史传奇,茹剑,孙阎. 不同生境下陌上菜的形态解剖学比较[J]. 草业学报, 2014, 23(2): 235-242. |
[10] | 陈林,杨新国,宋乃平,杨明秀,肖绪培,王兴. 宁夏中部干旱带主要植物叶性状变异特征研究[J]. 草业学报, 2014, 23(1): 41-49. |
[11] | 黄利春,金樑,张树振,李晶,杨阳,张晓强,王晓娟. 蝶形花亚科植物花粉释放机制[J]. 草业学报, 2013, 22(6): 305-314. |
[12] | 聂刚,张新全,黄琳凯,许文志,马迎梅. 中国西南区野生芒居群表型变异研究[J]. 草业学报, 2013, 22(5): 52-61. |
[13] | 鲁清林,柴守玺,张礼军,周刚. 冬小麦叶片和非叶器官对粒重的贡献[J]. 草业学报, 2013, 22(5): 165-174. |
[14] | 王永辉,郭凤霞,陈垣,郭爱峰,赵锐明. 野生高乌头开花习性及种子灌浆特性研究[J]. 草业学报, 2013, 22(4): 76-82. |
[15] | 董臣飞,丁成龙,许能祥,程云辉,沈益新,顾洪如. 稻草饲用品质及茎秆形态特征的研究[J]. 草业学报, 2013, 22(4): 83-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||