[1] Easterling D R, Evans J L, Groisman P Y. Observed variability and trends in extreme climate events: a brief review. Bulletin of the American Meteorological Society, 2000, 81: 417-425. [2] Karl T R, Trenberth K E. Modern global climate change. Science, 2003, 302(5651): 1719-1723. [3] Li K R, Chen Y F, Huang M, et al . Model studies of the impacts of climate change on Land Cover and its feedback. Acta Geographic Sinica, 2000, 55(Supplement): 57-63. [4] Meehl G A, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 2004, 305(5686): 994-997. [5] Gordon H B, Whetton P H, Pittock A B, et al . Simulated changes in daily precipitation intensity due to the enhanced greenhouse effect-implications for extreme precipitation events. Climate Dynamics, 1992, 8(2): 83-102. [6] Groisman P Y, Karl T R, Easterling D R, et al . Changes in the probability of heavy precipitation: Important indicators of climatic change. Climate Change, 1999, 42(1): 243-283. [7] Houghton J T, Ding Y, Griggs D J, et al . Climate Change 2001: The Scientific Basis[M]//Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2001. [8] IPCC. Climate Change 2007: The Physical Science Basis[M]//Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2007. [9] Meehl G A, Arblaster J M, Tebaldi C. Understanding future patterns of increased precipitation intensity in climate model simulations. Geophysical Research Letters, 2005, 32: L18719. [10] Yao Y B, Wang R Y, Deng Z Y, et al . Effects of climate change on potato growth in semi-arid region of Loess Plateau, China. Chinese Journal of Applied Ecology, 2010, 21(2): 379-385. [11] Vitousek P M. Beyond global warming: ecology and global change. Ecology, 1994, 75: 1861-1876. [12] White T, Campbell B, Kemp P, et al . Sensitivity of three grassland communities to simulated extreme temperature and rainfall events. Global Change Biology, 2000, 6(6): 671-684. [13] Yin H J, Lai T, Cheng X Y, et al . Warming effects on growth and physiology of seedlings of Betula albo-sinensis and Abies faxoniana under two contrasting light conditions in subalpine coniferous forest of western Sichuan, China. Journal of Plant Ecology, 2008, 32(5): 1072-1083. [14] Walck J L, Hidayati S N, Dixon K W, et al . Climate change and plant regeneration from seed. Global Change Biology, 2011, 17(6): 2145-2161. [15] Long L Q, Li X R. Effects of soil microbiotic crusts on seedling survival and seedling growth of two annum plants. Journal of Desert Research, 2003, 23(6): 656-660. [16] Liu G J, Zhang X M, Lv C Y, et al . Seedling growth dynamic of Haloxylon ammodendron under different water supply. Journal of Desert Research, 2012, 32(2): 388-394. [17] Yu X J, Jing Y Y, Xu C L, et al . Effects of film mulching on growth and crown and root characteristics of alfalfa in an anpine meadow. Acta Prataculturae Sinica, 2015, 24(6): 43-52. [18] Mu Z X, Zhang S Q, Hao W F, et al . The effect of root morphological traits and spatial distribution on WUE in maize. Acta Ecologica Sinica, 2005, 25(11): 2895-2900. [19] Ma T C, Yu R R, Chen R J, et al . Effect of drought stress simulated with PEG-6000 on root system in rice seedlin. Chinese Journal of Eco-Agriculture, 2010,18(6): 1206-1211. [20] Liu Y B, Zhang T G, Li X R, et al . Protective mechanism of desiccation tolerance in Reaumuria soongorica : leaf abscission and sucrose accumulation in the stem. Science in China (Series C), 2007, 50(1): 15-21. [21] Dong Q L, Li Y, Shan L S, et al . Population structure and distribution pattern of Reaumuria soongorica in Longshou Mountain of Zhangye City. Bulletin of Soi1 and Water Conservation, 2013, 33(4): 284-288. [22] Gao Q, Li Y, Su S P, et al . Effects of salt stress on physiological characteristics of Reaumuria soongorica seeds during imbibition. Journal of Desert Research, 2014, 34(1): 83-87. [23] Chong P F, Su S P, Li Y, et al . Physiological responses to PEG stress of Reaumuria soongorica seedlings from different geographical origins. Acta Prataculturae Sinica, 2013, 22(1): 183-192. [24] Yang X L, Zhang X M, Shan L S, et al . Analysis on root structure of Tamarix taklamakanensis in the Hinterland of the Taklimakan desert. Arid Zone Research, 2008, 25(5): 660-667. [25] Shan L S, Li Y, Dong Q L, et al . Ecological adaption of Reaumuria soongorica root system architecture to arid environment. Journal of Desert Research, 2012, 32(5): 1283-1290. [26] Shan L S, Li Y, Ren W, et al . Root architecture of two desert plant in central Hexi Corridor of Northwest China. Chinese Journal of Applied Ecology, 2013, 24(1): 25-31. [27] Zhuang Y L, Zhao W Z. Experimental study of effects of artificial dew on Bassia dasyphylla and Agriophyllum squarrosum . Journal of Desert Research, 2010, 30(5): 1068-1074. [28] Liu B, Zhao W Z. Ecological adaption of photosynthesis and water metabolism for Tamarix Ramosissima and Nitraria Sphaerocarpa in Desert-Oasis Ecotone. Journal of Desert Research, 2009, 29(1): 101-107. [29] Liu B, Chang X X, Li S B. Rainfall patterns and pulse characteristics in desert region of Heihe River basin. Acta Ecologica Sinica, 2010, 30(19): 5194-5199. [30] Song L C, Zhang C J. Changing features of precipitation over Northwest China during the 20th Century. Journal of Glaciology and Geocryology, 2003, 25(2): 143-147. [31] Jia W S, Zhang J H, Stomatal movements and long-distance signaling in plants. Plant Signaling and Behavior, 2008, 3(10): 772-777. [32] Ding H, Zhang Z M, Dai L X, et al . Responses of root morphology of peanut varieties differing in drought tolerance to water deficient stress. Acta Ecologica Sinica, 2013, 33(17): 5169-5176. [33] Zhang X Y. Characters and dynamic model of sorghum root growth and development. Chinese Journal of Ecology, 1999, 18(5): 65-67. [34] Hund A, Ruta N, Liedgens M. Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant and Soil, 2009, (318): 311-325. [35] Joungrunklang N, Toomsan B, Vorasoot N, et al . Rooting trains of peanut genotypes with different yield response to pre-flowering drought stress. Field Crops Research, 2011, 120(2): 262-270. [36] Wang H, Siopongco J, Wade J, et al . Fractal analysis on root systems of rice plants in response to drought stress. Environmental and Experimental Botany, 2009, 65(2/3): 338-344. [37] Li W R, Zhang S Q, Ding S Y, et al . Root morphological variation and water use in alfalfa under drought stress. Acta Ecologica Sinica, 2010, 30(19): 5140-5150. [38] Shan L S, Li Y, Duan Y N, et al . Response of root morphology and water use efficiency of Reaumuria soongorica to soil water change. Acta Bot Boreal Occident Sinica, 2014, 34(6): 1198-1205. [39] Shang Z B, Gao Q. Assessing the sensitivity of China water condition to global climate changes. Acta Ecologica Sinica, 2001, 21(4): 528-537. [40] Cheng X L, An S Q, Li B, et al . Summer rain pulse size and rainwater uptake by three dominant in a decertified grassland ecosystem in northwestern China. Plant Ecology, 2006, 184(1): 1-12. [41] Dodd M B, Lauenroth W K, Welker J M. Differential water resources use by herbaceous and woody plant life forms in a short grass steppe community. Oecologia, 1998, 117(4): 504-512. [42] Weltzin J F, Loik M E, Schwinning S, et al . Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bio Science, 2003, 53(10): 941-952. [43] Qi W, Zhang J W, Wang K J, et al . Effects of drought stress on the grain yield and root physiological traits of maize varieties with different drought tolerance. Chinese Journal of Applied Ecology, 2010, 21(1): 48-52. [44] Kato Y, Okami M. Root growth dynamics and stomatal behavior of rice ( Oryza sativa L.) grown under aerobic and flooded conditions. Field Crops Research, 2010, 117(1): 9-17. [45] Cai L P, Wu P F, Hou X L, et al . Morphological response to different drought stress in the roots of Neyraudia reynaudiana . Chinese Agricultural Science Bulletin, 2012, 28(28): 44-48. [46] Markesteijn L, Poorter L. Seedling roots morphology and biomass allocation of 62 tropical tree species in relation to drought-and shade-tolerance. Journal of Ecology, 2009, 97(2): 311-325. [47] Wahl S, Ryser P. Root tissue structure is linked to ecological strategies of grasses. New Phytologist, 2000, 148(3): 459-471. [48] Cornelissen J H C, Lavorel S, Garnier E, et al . A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51(4): 335-380. [49] Metcalfe D B, Meir P, Aragao L E O C, et al . The effects of water availability on root growth and morphology in an Amazon rainforest. Plant and Soil, 2008, 311(1/2): 189-199. [50] 李克让, 陈育峰, 黄玫, 等. 气候变化对土地覆被变化的影响及其反馈模型. 地理学报, 2000, 55(增刊1): 57-63. [51] 姚玉璧, 王润元, 邓振镛, 等. 黄土高原半干旱区气候变化及其对马铃薯生长发育的影响. 应用生态学报, 2010, 21(2): 379-385. [52] 尹华军, 赖挺, 程新颖, 等. 增温对川西亚高山针叶林内不同光环境下红桦和岷江冷杉幼苗生长和生理的影响. 植物生态学报, 2008, 32(5): 1072-1083. [53] 龙利群, 李新荣. 土壤微生物结皮对两种一年生植物幼苗存活和生长的影响. 中国沙漠, 2003, 23(6): 656-660. [54] 刘国军, 张希明, 吕朝燕, 等. 不同供水条件下梭梭幼苗生长动态的研究. 中国沙漠, 2012, 32(2): 388-394. [55] 鱼小军, 景媛媛, 徐长林, 等. 高寒区垄沟覆膜方式对苜蓿生长、根颈及根系特征的影响. 草业学报, 2015, 24(6): 43-52. [56] 慕自新, 张岁岐, 郝文芳, 等. 玉米根系形态性状和空间分布对水分利用效率的调控. 生态学报, 2005, 25(11): 2895-2900. [57] 马廷臣, 余蓉蓉, 陈荣军, 等. PEG-6000模拟干旱对水稻幼苗期根系的影响. 中国生态农业学报, 2010, 18(6): 1206-1211. [58] 董秋莲, 李毅, 单立山, 等. 张掖市龙首山红砂种群结构和分布格局研究. 水土保持通报, 2013, 33(4): 284-288. [59] 高茜, 李毅, 苏世平, 等. 盐胁迫对红砂( Reaumuria soongorica )种子吸胀过程中生理特的影响. 中国沙漠, 2014, 34(1): 83-87. [60] 种培芳, 苏世平, 李毅, 等. 不同地理种源红砂幼苗对PEG胁迫的生理响应. 草业学报, 2013, 22(1): 183-192. [61] 杨小林, 张希明, 单立山, 等. 塔克拉玛干沙漠腹地塔克拉玛干柽柳根系构筑型研究. 干旱区研究, 2008, 25(5): 660-667. [62] 单立山, 李毅, 董秋莲, 等. 红砂根系构型对干旱的生态适应. 中国沙漠, 2012, 32(5): 1283-1290. [63] 单立山, 李毅, 任伟, 等. 河西走廊中部两种荒漠植物根系构型特征. 应用生态学报, 2013, 24(1): 25-31. [64] 庄艳丽, 赵文智. 荒漠植物雾冰藜和沙米叶片对凝结水响应的模拟实验. 中国沙漠, 2010, 30(5): 1068-1074. [65] 刘冰, 赵文智. 荒漠绿洲过渡带柽柳和泡泡刺光合作用及水分代谢的生态适应性. 中国沙漠, 2009, 29(1): 101-107. [66] 刘冰, 常学向, 李守波. 黑河流域荒漠区降水格局及其脉动特征. 生态学报, 2010, 30(19): 5194-5199. [67] 宋连春, 张存杰. 20世纪西北地区降水量变化特征. 冰川冻土, 2003, 25(2): 143-147. [68] 丁红, 张智猛, 戴良香, 等. 不同抗旱性花生品种的根系形态发育及其对干旱胁迫的响应. 生态学报, 2013, 33(17): 5169-5176. [69] 李文娆, 张岁岐, 丁圣彦, 等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系. 生态学报, 2010, 30(19): 5140-5150. [70] 单立山, 李毅, 段雅楠, 等. 红砂幼苗根系形态特征和水分利用效率对土壤水分变化的响应. 西北植物学报, 2014, 34(6): 1198-1205. [71] 尚宗波, 高琼. 中国水分状况对全球气候变化的敏感性分析. 生态学报, 2001, 21(4): 528-537. [72] 齐伟, 张吉旺, 王空军, 等. 干旱胁迫对不同耐旱性玉米杂交种产量和根系生理特性的影响. 应用生态学报, 2010, 21(1): 48-52. [73] 蔡丽平, 吴鹏飞, 侯晓龙, 等. 类芦根系对不同强度干旱胁迫的形态学响应. 中国农学通报, 2012, 28(28): 44-48. |