[1] Qu T, Nan Z B. Research progress on responses and mechanisms of crop and grass under drought stress. Acta Prataculturae Sinica, 2008, 17(2): 126-135. [2] Schank S G. Chromosome numbers of eleven new Hemarthria introductions. Crop Science, 1972, 12: 62. [3] Quesenberry K H, Oakes A J, Jessop D S. Cytologia and geographical characterization of Hemarthria . Euphytica, 1982, 31(2): 409-416. [4] Gui S C, Yang F, Zhang B Y, et al . Changes in protective enzyme activities in cells of Hemarthria conpressa under water stress. Acta Prataculturae Sinica, 2010, 19(5): 278-282. [5] Huang L K, Zhang X Q, Xie W G, et al . Evaluation of drought resistance for Hemarthria compressa at seedling stage[C]// 2010: Photonics and Imaging for Agricultural Engineering, 77520C February 04, 2011, doi:10.1117/12. 886382. [6] Ji Y, Zhang X Q, Peng Y, et al . Effects of drought stress on lipid peroxidation, osmotic adjustment and activities of protective enzymes in the roots and leaves of orchardgrass. Acta Prataculturae Sinica, 2014, 23(3): 144-151. [7] Du R F, Hao W F, Wang L F. Dynamic responses on anti-oxidative defense system and lipid peroxidation of Lespedeza davurica to drought stress and re-watering. Acta Prataculturae Sinica, 2012, 21(2): 51-61. [8] Li Z, Peng Y, Ma X. Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover ( Trifolium repens L.) associated with antioxidative enzyme protection and lignin metabolism. Acta Physiologiae Plantarum, 2013, 35(1): 213-222. [9] Jin J Y, Zhang W H, Huang J G. Effects of water stress on growth, nutrition and physiological indices of Hemarthria compressa . Plant Nutrition and Fertilizer Science, 2011, 17(6): 1545-1550. [10] Jin J Y, Zhang W H, Yuan L. Physiological responses of three forages to drought stress and evaluation of their drought resistance. Acta Prataculturae Sinica, 2015, 24(10): 157-165. [11] Chen D Y. The physiological effects of drought stress and rewatering on Hemarthria compressa . Jiangxi Feed, 2011, (2): 12-16. [12] Messina F J, Durham S L. Trade-off between plant growth and defense? A comparison of sagebrush populations. Oecologia, 2002, 131(1): 43-51. [13] Hu T T, Kang S Z. The compensatory effect in drought resistance of plants and its application in water-saving agriculture. Acta Ecologica Sinica, 2005, 25(4): 885-891. [14] Shi J Y, Yuan X F, Ding G J. The reviews of study on water deficit compensation and over-compensation effect for crops. Journal of Mountain Agriculture and Biology, 2000, 19(3): 226-232. [15] Zhao L Y, Deng X P, Shan L. A review on types and mechanisms of compensation effect of crops under water deficit. Chinese Journal of Applied Ecology, 2004, 15(3): 523-526. [16] Liu L, Hao W P, Bai Q J, et al . Differential compensatory effects of winter wheat in water stress and re-watering during jointing stage in north China. Journal of Irrigation and Drainage, 2011, 30(2): 37-39. [17] Bu L D, Zhang R H, Han M M, et al . The physiological mechanism of compensation effect in maize leaf by re-watering after drought stress. Acta Agriculturae Boreali-occidentalis Sinica, 2009, 18(2): 88-92. [18] Wang L B, Zu W, Dong S K, et al . Effects of drought stresses and times on compensation effect after re-watering in soybean. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 150-156. [19] Ristic Z, David D. Chloroplast structure after water and high temperature stress in two lines of maize that differ in endogenous levels of abscises acid. Plant Science, 1992, 153: 186-196. [20] Hao W P. Influence of Water Stress and Re-watering on Maize WUE and Compensation Effects[D]. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2013. [21] Xu S, Zhang X Q, Wu Y Q. Review on study and application of Hemarthria . Grassland of China, 2001, 23(4): 53-58. [22] Zhang X Z. The Research Method of Crop Physiology[M]. Beijing: Chinese Agricultural Press, 1992. [23] Zhang Z L. Plant Physiology Experiment[M]. Beijing: Higher Education Press, 1990. [24] Li H S. The Principle and Technology of Plant Physiology and Biochemistry Experiment[M]. Beijing: Higher Education Press, 2000. [25] Yang J H, Wang C L, Dai H L. Soil Agrochemical Analysis and Environmental Monitoring[M]. Beijing: China Land Press, 2008. [26] Huang J G. Plant Nutrition[M]. Beijing: Chinese Forestry Press, 2004. [27] Guo X P, Liu Z P, Wang Q M, et al . Study on photosynthetic compensatory effects of PEG osmotic stress and rewatering on maize. Journal of Hohai University (Natural Science), 2007, 35(3): 286-290. [28] Chen X Y, Luo Y P. Study on the compensatory effect of rewatering during the flowering stage after previous water stress in winter wheat. Acta Agronomica Sinica, 2001, 27(4): 512-516. [29] Liu J L, Zhao C X, Wu N, et al . Effects of drought and rewatering at seedling stage on photosynthetic characteristics and water use efficiency of peanut. Scientia Agricultura Sinica, 2014, 44(3): 469-476. [30] Chu L L, Zhang Z X. Effects of nitrogen nutrition and water stress on compensation effect of the yield of soybean. Acta Ecologica Sinica, 2010, 30(10): 2665-2670. [31] Wang C H, Yang J Q, Dong K H, et al . Effects of different cutting ways on the nutritive value of alfalfa meal. Chinese Journal of Eco-Agriculture, 2004, 12(3): 140-142. [32] Ge T D, Sui F G, Li J Z, et al . Effects of drought on growth of root and shoot of summer maize. Chinese Agricultural Science Bulletin, 2005, 21(1): 103-109. [33] Yu L, Wang Y L, Garnett T, et al . Physiological responses of different alfalfa to drought stress. Acta Prataculturae Sinica, 2006, 15(3): 75-85. [34] Huang J G, Hu D J. The influence of water stress on K + distribution in maize and free proline accumulation in its leaves. Journal of Southwest Agricultural University, 1987, 9(4): 449-453. [35] Zhou J, Lu X H, Wang Y R, et al . Molecular dynamics study on ionic hydration. Fluid Phase Equilibria, 2002, 194: 257-270. [36] Li C X, Wang W, Li D Q. Effects of long-term water stress on osmotic adjustment and osmolytes in wheat roots and leaves. Acta Botanica Borealioccidentalia Sinica, 2001, 21(5): 924-930. [37] Tan J F, Hong J P, Zhao H J, et al . Effects of different potassium application rates on yield, quality and physiological characteristics of dryland winter wheat. Plant Nutrition and Fertilizer Science, 2008, 14(3): 456-462. [38] Zhang S G, Liu G D, Liu G L. Plant nutrition and drought resistance of crops. Chinese Bulletin of Botany, 2001, 18(1): 64-69. [39] Kramer P J. Plant and Soil Water Relationships[M]. New York: Mc Graw-Hill, 1969. [40] Mengel K, Kirkby E A. Principles of Plant Nutrition[M]. Dordrecht: Kluwer Academic Publishers, 2001. [41] Bohner H J, Jensen R G. Strategies for engineering water-stress tolerance in plants. Trends Biotech, 1996, 14: 89-95. [42] Hanson A D. Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars. Crop Science, 1977, 17(5): 720-726. [43] Wang B X, Huang J C, Wang H. The correlation of proline accumulation and drought resistance in various plants under water stress condition. Acta Phytophysiologica Sinica, 1989, 15(1): 46-51. [44] Jiao R, Liu H B, Liu G S, et al . Discussion of accumulation of proline and its relationship with osmotic stress tolerance of plants. Chinese Agricultural Science Bulletin, 2011, 27(7): 216-221. [45] Tan X R, Wu X Q, Fu Y, et al . Effects of drought and rewatering on protein damage of wheat seedlings. Journal of Anhui Agricultural Sciences, 2006, 34(16): 4034-4037. [46] Fan X L, Li L, He W Q, et al . Nitrogen nutrition properties of drought tolerance winter wheat of near isogenic lines. Journal of South China Agricultural University, 1998, 19(4): 50-54. [47] Han J Q, Wang X F, Zhang Z G. Effects of surface soil drought on root spatial distribution and activity of white clovers. Chinese Agricultural Science Bulletin, 2007, 23(3): 458-461. [48] Wang N N, Huang M, Chen D W, et al . Effects of water stress on root and yield of rice at different growth stages. Chinese Journal of Tropical Crops, 2013, 34(9): 1650-1656. [49] 曲涛, 南志标. 作物和牧草对干旱胁迫的响应及机理研究进展. 草业学报, 2008, 17(2): 126-135. [50] 桂世昌, 杨峰, 张宝艺, 等. 水分胁迫下扁穗牛鞭草根系保护酶活性变化. 草业学报, 2010, 19(5): 278-282. [51] 季杨, 张新全, 彭燕, 等. 干旱胁迫对鸭茅根、叶保护酶活性、渗透物质含量及膜质过氧化作用的影响. 草业学报, 2014, 23(3): 144-151. [52] 杜润峰, 郝文芳, 王龙飞. 达乌里胡枝子抗氧化保护系统及膜脂过氧化对干旱胁迫及复水的动态响应. 草业学报, 2012, 21(2): 51-61. [53] 靳军英, 张卫华, 黄建国. 干旱对扁穗牛鞭草生长、营养及生理指标的影响. 植物营养与肥料学报, 2011, 17(6): 1545-1550. [54] 靳军英, 张卫华, 袁玲. 三种牧草对干旱胁迫的生理响应及抗旱性评价. 草业学报, 2015, 24(10): 157-165. [55] 陈东颖. 干旱胁迫及复水对扁穗牛鞭草的生理影响. 江西饲料, 2011, (2): 12-16. [56] 胡田田, 康绍忠. 植物抗旱性中的补偿效应及其在农业节水中的应用. 生态学报, 2005, 25(4): 885-891. [57] 施积炎, 袁小风, 丁贵杰. 作物水分亏缺补偿与超补偿效应的研究现状. 山地农业生物学报, 2000, 19(3): 226-232. [58] 赵丽英, 邓西平, 山仑. 水分亏缺下作物补偿效应类型及机制研究概述. 应用生态学报, 2004, 15(3): 523-526. [59] 刘琳, 郝卫平, 白清俊, 等. 华北冬小麦拔节期水分胁迫-复水补偿效应研究. 灌溉排水学报, 2011, 30(2): 37-39. [60] 卜令驿, 张仁和, 韩苗苗, 等.干旱复水激发玉米叶片补偿效应的生理机制. 西北农业学报, 2009, 18(2): 88-92. [61] 王利彬, 祖伟, 董守坤, 等. 干旱程度及时期对复水后大豆生长和代谢补偿效应的影响. 农业工程学报, 2015, 31(11): 150-156. [62] 郝卫平.干旱复水对玉米水分利用效率及补偿效应影响研究[D]. 北京: 中国农业科学院, 2013. [63] 徐 胜, 张新全, 吴彦奇.牛鞭草研究与应用概况. 中国草地, 2001, 23(4): 53-58. [64] 张宪政. 作物生理研究方法[M]. 北京: 中国农业出版社, 1992. [65] 张志良. 植物生理学实验指导[M]. 北京: 高等教育出版社, 1990. [66] 李合生.植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. [67] 杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测[M].北京: 中国大地出版社, 2008. [68] 黄建国. 植物营养学[M]. 北京: 中国林业出版社, 2004. [69] 郭相平, 刘展鹏, 王青梅, 等. 采用PEG模拟干旱胁迫及复水玉米光合补偿效应. 河海大学学报(自然科学版), 2007, 35(3): 286-290. [70] 陈晓远, 罗远培. 开花期复水对受旱冬小麦的补偿效应研究. 作物学报, 2001, 27(4): 512-516. [71] 吉利, 赵长星, 吴娜, 等. 苗期干旱及复水对花生光合特性及水分利用效率的影响. 中国农业科学, 2014, 44(3): 469-476. [72] 褚丽丽, 张忠学. 氮素营养与水分胁迫对大豆产量补偿效应的影响.生态学报, 2010, 30(10): 2665-2670. [73] 王常慧, 杨建强, 董宽虎, 等. 不同刈割方式对苜蓿草粉营养价值的影响研究. 中国生态农业学报, 2004, 12(3): 140-142. [74] 葛体达, 隋方功, 李金政, 等.干旱对夏玉米根冠生长的影响. 中国农学通报, 2005, 21(1): 103-109. [75] 余玲, 王彦荣, Garnett T, 等. 紫花苜蓿不同品种对干旱胁迫的生理响应. 草业学报, 2006, 15(3): 75-85. [76] 黄建国, 胡笃敬. 干旱对玉米植株K + 分布及叶片游离脯氨酸积累的影响. 西南农业大学学报, 1987, 9(4): 449-453. [77] 李春香, 王纬, 李德全. 长期水分胁迫对小麦生育中后期根叶渗透能力、渗透调节物质的影响. 西北植物学报, 2001, 21(5): 924-930. [78] 谭金芳, 洪坚平, 赵会杰, 等. 不同施钾量对旱作冬小麦产量、品质和生理特性的影响. 植物营养与肥料学报, 2008, 14(3): 456-462. [79] 张士功, 刘国栋, 刘更另. 植物营养与作物抗旱性. 植物性通报, 2001, 18(1): 64-69. [80] 王邦锡, 黄久常, 王辉. 不同植物在水分胁迫条件下脯氨酸累积与抗旱性的关系. 植物生理学报, 1989, 15(1): 46-51. [81] 焦蓉, 刘好宝, 刘惯山, 等. 论脯氨酸累积与植物抗渗透胁迫. 中国农学通报, 2011, 27(7): 216-221. [82] 谭晓荣, 吴兴泉, 伏毅, 等. 干旱及复水对小麦幼苗蛋白质损伤的影响. 安徽农业科学, 2006, 34(16): 4034-4037. [83] 樊小林, 李玲, 何文勤, 等. 近等基因系抗旱小麦氮素营养遗传性状的研究. 华南农业大学学报, 1998, 19(4): 50-54. [84] 韩建秋, 王秀峰, 张志国. 表土干旱对白三叶根系分布和根活力的影响. 中国农学通报, 2007, 23(3): 458-461. [85] 汪妮娜, 黄敏, 陈德威, 等. 不同生育期水分胁迫对水稻根系生长及产量的影响. 热带作物学报, 2013, 34(9): 1650-1656. |