[1] Zhang Y, Wang G, Wang Y. Changes in alpine wetland ecosystems of the Qinghai-Tibetan plateau from 1967 to 2004. Environmental Monitoring & Assessment, 2011, 180(1-4): 189-199. [2] Duan Z H, Qiao Y M, Quan X L, et al . Analysis of nitrogen and carbon composition and stable isotope characteristics and physicochemical properties of wetland and grassland soil in source region of the Yellow River. Journal of Soil and Water Conservation, 2015, 29(4): 247-252. [3] Cao L H, Liu H M, Zhao S W. Distribution of soil organic carbon and its relationship with soil physical and chemical properties on degraded alpine meadows. Pratacultural Science, 2011, 28(8): 1411-1415. [4] Han L H, Shang Z H, Ren G H, et al . The response of plants and soil on black soil patch of the Qinghai-Tibetan Plateau to variation of bare-patch areas. Acta Prataculturae Sinica, 2011, 20(1): 1-6. [5] Wang Z R, Yang G J, Yi S H, et al . Effects of environmental factors on the distribution of plant communities in a semi-arid region of the Qinghai-Tibet Plateau. Ecological Research, 2012, 27(4): 667-675. [6] Lin G H. Stable isotope ecology: a new branch of ecology resulted from technology advances. Chinese Journal of Plant Ecology, 2010, 34(2): 119-122. [7] Ollinger S V, Aber J D, Reich P B, et al . Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO 2 and land use history on the carbon dynamics of northern hardwood forests. Global Change Biology, 2002, 8(6): 545-562. [8] Bowen G J, Ehleringer J R, Chesson L A, et al . Stable isotope ratios of tap water in the contiguous United States. Water Resources Research, 2007, 43(3): 1-12. [9] Hoeinghaus D J, Zeug S C. Can stable isotope ratios provide for community-wide measures of trophic structure. Ecology, 2008, 89(8): 2353-2357. [10] Zhang L, Sun X Y, Qiao Y, et al . Distribution characteristics of soil organic carbon and its stable carbon isotope composition in desertification grassland under different grazing intensities. Journal of Soil and Water Conservation, 2009, 23(6): 149-153. [11] Wu T X, Huang J H. Effects of grazing on the δ 15 N values of foliage and soil in a typical steppe ecosystem in Inner Mongolia, China. Chinese Journal of Plant Ecology, 2010, 34(2): 160-169. [12] Ren Q J, Luo Y J, Wang H Y, et al . Restoration of degraded typical alpine meadowland on the Qinghai-Tibetan plateau——Effect of fertilizing and cutting on grassland quality. Acta Prataculturae Sinica, 2004, 13(2): 43-49. [13] Liu X Y, Long R J, Shang Z H. Interactive mechanism of service function of alpine rangeland ecosystems in Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2012, 32(24): 7688-7697. [14] Harris R B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments, 2009, 74(1): 1-12. [15] Connin S L, Virginia R A, Chamberlain C P. Carbon isotopes reveal soil organic matter dynamics following arid land shrub expansion. Oecologia, 1997, 110(3): 374-386. [16] Männel T T, Auerswald K, Schnyder H. Altitudinal gradients of grassland carbon and nitrogen isotope composition are recorded in the hair of grazers. Global Ecology and Biogeography, 2007, 16(5): 583-592. [17] Zhang J T. Applied Ecology[M]. Beijing: Science Press, 2003. [18] Guggenberger G, Kaiser K. Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma, 2003, 113(3): 293-310. [19] Wan H, Liu W G, Wei J. Effects of vegetation succession on carbon stock and δ 13 C in Loess Plateau. Chinese Journal of Ecology, 2015, 34(1): 100-105. [20] Li L B, Tu C L, Zhao Z Q, et al . Distribution characteristics of soil organic carbon and its isotopic composition for soil profiles of loess plateau under different vegetation conditions. Earth and Environment, 2011, 39(4): 441-449. [21] Zhang Y X, Sun X Y, Zhang L, et al . A study on the characteristics of soil stable carbon isotope composition in different types of grassland in northwest china. Chinese Journal of Soil Science, 2013, 44(2): 348-354. [22] Qiao Y M, Duan Z H, Li X Q, et al . Effects of the conversion of a degraded alpine Kobresia meadow on the organic carbon and nitrogen of soil and plants. Polish Journal of Ecology, 2015, 63(4): 500-511. [23] Farquhar G D, O’Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 1982, 13(2): 281-292. [24] Quan X L, Qiao Y M, Duan Z H, et al . Carbon and nitrogen composition and their isotope characteristics of alpine meadow plants. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(8): 1650-1656. [25] Ding Y K, Yang J, Song B Y, et al . Effect of different vegetation types on soil organic carbon in Mu Us desert. Acta Prataculturae Sinica, 2012, 21(2): 18-25. [26] Wang W Y, Wang Q J, Lu Z Y. Soil organic carbon and nitrogen content of density fractions and effect of meadow degradation to soil carbon and nitrogen of fractions in alpine Kobresia meadow. Science in China, 2009, 39(5): 647-654. [27] Luo Y Y, Zhang Y, Zhang J H, et al . Soil stoichiometry characteristics of alpine meadow at its different degradation stages. Chinese Journal of Ecology, 2012, 31(2): 254-260. [28] Esteban G J, Robert B J. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry, 2001, 53(1): 51-77. [29] Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass. Biogeochemistry, 2007, 85(3): 235-252. [30] Lin L, Zhang F W, Li Y K, et al . The soil carbon and nitrogen storage and C/N metrological characteristics of chemistry in Kobresia humilis meadow in degradation succession stages. Chinese Journal of Grassland, 2012, 34(3): 42-47. [31] Li S Q, Wang X Z, Guo Z G, et al . Effects of short-term grazing on c and n content in soil and soil microbe in alpine meadow in the north-eastern edge of the Qinghai-Tibetan Plateau. Chinese Journal of Grassland, 2013, 35(1): 55-60. [2] 段中华, 乔有明, 全小龙, 等. 黄河源区湿地、草地土壤理化性质和碳氮组成及其稳定同位素特征分析. 水土保持学报, 2015, 29(4): 247-252. [3] 曹丽花, 刘合满, 赵世伟. 退化高寒草甸土壤有机碳分布特征及与土壤理化性质的关系. 草业科学, 2011, 28(8): 1411-1415. [4] 韩立辉, 尚占环, 任国华, 等. 青藏高原“黑土滩”退化草地植物和土壤对秃斑面积变化的响应. 草业学报, 2011, 20(1): 1-6. [6] 林光辉. 稳定同位素生态学: 先进技术推动的生态学新分支. 植物生态学报, 2010, 34(2): 119-122. [10] 张林, 孙向阳, 乔永, 等. 不同放牧强度下荒漠草原土壤有机碳及其δ 13 C值分布特征. 水土保持学报, 2009, 23(6): 149-153. [11] 吴田乡, 黄建辉. 放牧对内蒙古典型草原生态系统植物及土壤δ 15 N的影响. 植物生态学报, 2010, 34(2): 160-169. [12] 仁青吉, 罗燕江, 王海洋, 等. 青藏高原典型高寒草甸退化草地的恢复——施肥刈割对草地质量的影响. 草业学报, 2004, 13(2): 43-49. [13] 刘兴元, 龙瑞军, 尚占环. 青藏高原高寒草地生态系统服务功能的互作机制. 生态学报, 2012, 32(24): 7688-7697. [17] 张金屯. 应用生态学[M]. 北京: 科学出版社, 2003. [19] 万昊, 刘卫国, 魏杰. 黄土高原植被演替对土壤碳库及δ 13 C的影响. 生态学杂志, 2015, 34(1): 100-105. [20] 李龙波, 涂成龙, 赵志琦, 等. 黄土高原不同植被覆盖下土壤有机碳的分布特征及其同位素组成研究. 地球与环境, 2011, 39(4): 441-449. [21] 张月鲜, 孙向阳, 张林, 等. 我国西北地区不同类型草原土壤有机质的稳定碳同位素特征研究. 土壤通报, 2013, 44(2): 348-354. [24] 全小龙, 乔有明, 段中华, 等. 高寒草甸植物碳氮组成及其稳定同位素特征. 西北植物学报, 2015, 35(8): 1650-1656. [25] 丁越岿, 杨劼, 宋炳煜, 等. 不同植被类型对毛乌素沙地土壤有机碳的影响. 草业学报, 2012, 21(2): 18-25. [26] 王文颖, 王启基, 鲁子豫. 高寒草甸土壤组分碳氮含量及草甸退化对组分碳氮的影响. 中国科学: 地球科学, 2009, 39(5): 647-654. [27] 罗亚勇, 张宇, 张静辉, 等. 不同退化阶段高寒草甸土壤化学计量特征. 生态学杂志, 2012, 31(2): 254-260. [30] 林丽, 张法伟, 李以康, 等. 高寒矮嵩草草甸退化过程土壤碳氮储量及C/N化学计量学特征. 中国草地学报, 2012, 34(3): 42-47. [31] 李世卿, 王先之, 郭正刚, 等. 短期放牧对青藏高原东北边缘高寒草甸土壤及微生物碳氮含量的影响. 中国草地学报, 2013, 35(1): 55-60. |