[1] He Y L, Zhou H K, Zhao X Q, et al . Alpine grassland degradation and its restoration on Qinghai-Tibet plateau. Prataculture and Animal Husbandry, 2008, (11): 1-9. [2] Hu Z Z. The Development of Grass Industry and Ecology Environment of Qinghai-Tibet Plateau[M]. Beijing: China Tibetology Press, 2000. [3] Cui Q H, Jiang Z G, Liu J K, et al . A review of the cause of rangeland degradation on Qinghai-Tibet plateau. Pratacultural Science, 2007, 24(5): 20-26. [4] Cheng S K, Shen L. The Tibetan plateau and population, resources, environment and development interactive relation. Journal of Natural Resources, 2000, 15(4): 297-304. [5] Gao Q Z, Duan M J, Wan Y F, et al . Comprehensive evaluation of eco-environmental sensitivity in Northern Tibet. Acta Ecological Sinica, 2010, 30(15): 4129-4136. [6] Tan H Y, Chen B R, Yan R R, et al . Advances on soil microbiological characteristics of grassland ecosystems and its response to human disturbances. Acta Agrectir Sinica, 2014, 22(6): 1163-1170. [7] Shang Z H, Ding L L, Long R J, et al . Relationship between soil microorganisms, above-ground vegetation, and soil environment of degraded alpine meadows in the headwater areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2007, 16(1):34-40. [8] Singh A K, Bordoloi L J, Kumar M, et al . Land use impact on soil quality in eastern Himalayan region of India. Environmental Monitoring and Assessment, 2014, 186(4): 2013-2024. [9] Henrot K, Robertson G P. Vegetation removal in two soils of the humid tropics: effect on microbial biomass. Soil Biology and Biochemistry, 1994, 26(1): 111-116. [10] Yu X J, Jing Y Y, Duan C H, et al . Influence of enclosure and grazing intensity on alpine meadow vegetation and soil characteristics in the Eastern Qilian Mountains. Agricultural Research in the Arid Areas, 2015, 33(1): 252-277. [11] Cao W X, Li W, Li X L, et al . Effects of nitrogen fertilization on plant community structure and soil nutrient in alpine meadow-steppe. Journal of Desert Research, 2015, 35(3): 658-666. [12] Zhang Y C, Niu D C, Han T, et al . Effect of reseeding on productivity and plant diversity on alpine meadows. Acta Prataculturae Sinica, 2012, 21(2): 305-309. [13] Deng B, Ren G H, Liu Z Y, et al . Effect of 3-year fencing on soil seed banks of three alpine grassland communities. Acta Prataculturae Sinica, 2012, 21(5): 23-31. [14] Shen J L, Tan G, Qiao H L, et al . Study on effect of grassland improvement on alpine degraded grassland vegetation. Chinese Journal of Grassland, 2000, (5): 50-55. [15] Mckinley V Y, Peacock A D, White D C. Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils. Soil Biology and Biochemistry, 2005, 37(10): 1946-1958. [16] Fensham R J, Holman J E, Cox M J. Plant species responses along a grazing disturbance gradient in Australian grassland. Journal of Vegetation Science, 1999, 10(1): 77-86. [17] Wu G L, Liu Z H, Zhang L, et al . Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China. Plant and Soil, 2010, 332(1): 331-337. [18] Chen Z X,Tian F P,Wu G L, et al . Effects of overseeding grass on aboveground biomass of different economic group in Maqu alpine desertified meadow pasture. Chinese Journal of Grassland, 2011, 33(4): 58-60. [19] Xu T, Qi J, Pu X P, et al . Comparison of the yields and nutrients of seven forage species in Maqu county. Chinese Journal of Grassland, 2012, 34(3): 113-116. [20] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707. [21] Brookes P C, Andrea L, Pruden G, et al . Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 1985, 17(6): 837-842. [22] Brookes P C, Powlson D S, Jenkinson D S. Phosphorus in the soil microbial biomass. Soil Biology and Biochemistry, 1984, 16(3): 169-175. [23] Kirkegaard J A, Sarwar M, Wong P T W, et al . Field studies on the biofumigation of take-all by Brassica break crops. Crop and Pasture Science, 2000, 51(4): 445-456. [24] Schimel D S. Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1995, 1(1): 77-91. [25] Xing W, Lia Z, Fua B, et al . Restoration of ecosystem carbon and nitrogen storage and microbial biomass after grazing exclusion in semi-arid grasslands of Inner Mongolia. Ecological Engineering, 2014, 73: 395-403. [26] Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews, 1992, 67(3): 321-358. [27] Guo J X, Zhu Y C. Study on numbers and biomass of soil microorganism in Aneurolep idium Chinense grassland. Acta Ecologica Sinica, 1997, 17(1): 78-83. [28] Wen D R Y, Li G, Zhang J N, et al . The study of soil microbial biomass and soil enzyme activity on different grassland in Hulunbeier, Inner Mongolia. Acta Prataculturae Sinica, 2010, 19(5): 94-102. [29] Zhong F, Chai X H, Wang G J, et al . Soil physical-chemistry and microbial characteristics under different vegetation restoration modes in the loess hilly region. Journal of Desert Research, 2014, 34(4): 1064-1072. [30] Yang C D, Long R J, Chen X R, et al . Seasonal dynamics in soil microbial biomass and enzymatic activities under different alpine brush lands of the eastern Qilian mountains. Acta Prataculturae Sinica, 2011, 20(6): 135-142. [31] Shan G L, Chen G, Ning F, et al . Dynamics of soil microorganism and enzyme activity in typical steppe of restoration succession process. Acta Agrectir Sinica, 2012, 20(2): 292-297. [32] Díaz-Raviña M, Acea M J, Carballas T. Seasonal changes in microbial biomass and nutrient flush in forest soil. Biology Fertile Soil, 1995, 19: 220-226. [33] Xie L L. Studies on the Dynamics of Soil Microorganisms in a Eucalyptus Plantation[D]. Guangzhou: South China University of Tropical Agriculture, 2005. [34] Barbhuiya A R, Arunachalam A, Pandey H N, et al . Dynamics of soil microbial C, N and P in the disturbed and undisturbed stands of a tropical wet-evergreen forest. European Journal of Soil Biology, 2004, 40(3): 113-121. [35] Zhang J, Song W F, Peng Y G, et al . Studies on spatial and temporal variations of soil moisture in forest in water source area of Yuanyang terrace. Journal of Northwest Forestry University, 2014, 29(2): 49-60. 36 参考文献: [1] 贺有龙, 周华坤, 赵新全, 等. 青藏高原高寒草地的退化及其恢复. 草业与畜牧, 2008, (11): 1-9. [2] 胡自治. 青藏高原的草业发展与生态环境[M]. 北京: 中国藏学出版社, 2000. [3] 崔庆虎, 蒋志刚, 刘季科, 等. 青藏高原草地退化原因述评. 草业科学, 2007, 24(5): 20-26. [4] 成升魁, 沈镭. 青藏高原人口、资源、环境与发展互动关系探讨. 自然资源学报, 2000, 15(4): 297-304. [5] 高清竹, 段敏杰, 万运帆, 等. 藏北地区生态与环境敏感性评价. 生态学报, 2010, 30(15): 4129-4136. [6] 谭红妍, 陈宝瑞, 闫瑞瑞, 等. 草地土壤微生物特性及其对人为干扰响应的研究进展. 草地学报, 2014, 22(6): 1163-1170. [7] 尚占环, 丁玲玲, 龙瑞军, 等. 江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系. 草业学报, 2007,16(1): 34-40. [10] 鱼小军, 景媛媛, 段春华, 等. 围栏与不同放牧强度对东祁连山高寒草甸植被和土壤的影响. 干旱地区农业研究, 2015, 33(1): 252-277. [11] 曹文侠, 李文, 李小龙, 等. 施氮对高寒草甸草原植物群落和土壤养分的影响. 中国沙漠, 2015, 35(3): 658-666. [12] 张永超, 牛得草, 韩潼, 等. 补播对高寒草甸生产力和植物多样性的影响. 草业学报, 2012, 21(2): 305-309. [13] 邓斌, 任国华, 刘志云, 等. 封育三年对三种高寒草地群落土壤种子库的影响. 草业学报, 2012, 21(5): 23-31. [14] 沈景林, 谭刚, 乔海龙, 等. 草地改良对高寒退化草地植被影响的研究. 中国草地, 2000, (5): 50-55. [18] 陈子萱, 田福平, 武高林, 等. 补播禾草对玛曲高寒沙化草地各经济类群地上生物量的影响.中国草地学报, 2011, 33(4): 58-60. [19] 许涛, 祁娟, 蒲小鹏, 等. 甘南玛曲七种主要饲草营养价值比较. 中国草地学报, 2012, 34(3): 113-116. [27] 郭继勋, 祝廷成. 羊草草原土壤微生物的数量和生物量. 生态学报, 1997, 17(1): 78-83. [28] 文都日乐, 李刚, 张静妮, 等. 呼伦贝尔不同草地类型土壤微生物量及土壤酶活性研究. 草业学报, 2010, 19(5): 94-102. [29] 钟芳, 柴晓虹, 王国基, 等. 植被恢复方式对黄土丘陵区土壤理化性质及微生物特性的影响. 中国沙漠, 2014, 34(4): 1064-1072. [30] 杨成德, 龙瑞军, 陈秀蓉, 等. 东祁连山高寒灌丛草地土壤微生物量及土壤酶季节性动态特征. 草业学报, 2011, 20(6): 135-142. [31] 单贵莲, 陈功, 宁发, 等. 典型草原恢复演替过程中土壤微生物及酶活性动态变化研究. 草地学报, 2012, 20(2): 292-297. [33] 谢龙莲. 桉树人工林土壤微生物动态变化研究[D]. 广州: 华南热带农业大学, 2005. [35] 张娟, 宋维峰, 彭永刚, 等. 元阳梯田水源区林地土壤水分时空变异性研究. 西北林学院学报, 2014, 29(2): 49-60. |