[1] Mou P, Jones R H, Tan Z, et al . Morphological and physiological plasticity of plant roots when nutrients are both spatially and temporally heterogeneous. Plant and Soil, 2013, 364(1/2): 373-384. [2] Hu Q P, Guo Z H, Li C Y, et al . Advance at Phenotypic Plasticity in plant responses to abiotic factors. Scientia Silae Sinicae, 2008, (5): 135-142. [3] Li X L, Hou X Y, Wu X H, et al . Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe. Chinese Journal of Plant Ecology, 2014, (5): 440-451. [4] Kattia Palacio-Lopez B B. The ubiquity of phenotypic plasticity in plants: A synthesis. Ecology & Evolution, 2015, 5(16):3389-3400. [5] Xie Y H, Yu D, Geng X H. Effects of elevated CO 2 concentration on phenotypic physiological and biochemical characteristics of submersed plant potamogeton crispus leaf. Acta Phytoecologica Sinica, 2003, 27(2): 218-222. [6] Sheng H Y, Li W C, Chang J. Comparison of plasticity of seedling growth of two umbellaceae species in response to light intensity. Acta Ecologica Sinica, 2006, (6): 1854-1861. [7] Chen S Y, Zhang J L, Jia P, et al . Impact of neighborhood effects on adaptive plasticity of plant height under light competition environment. Journal of Lanzhou University: Natural Sciences, 2009, (6): 76-81. [8] Tao Y, Zhang Y M, Quan Y W, et al . Morphology and biomass characteristics of ephemeroid plant Allium pallasii and their relationships in junggar basin, China. Journal of Desert Research, 2012, (5): 1328-1334. [9] Geng Y P, Zhang W J, Li B, et al . Phenotypic plasticity and invasiveness of alien plants. Biodiversity Science, 2004, (4): 447-455. [10] Li X H, Li X L, Jiang D M, et al . A comparative study of the individual biomass and modular biomass of 70 herbaceous species found in the Horqin Sandy Land. Arid Zone Research, 2009, 26(2): 56-62. [11] Zhang W H, Li H, Li J X, et al . Individual and modular biomass dynamics of Kingdonia uninflora population in Qinling Mountain. Chinese Journal of Applied Ecology, 2003, (4): 530-534. [12] Zhu J D, Meng T T, Ni J, et al . Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types. Chinese Journal of Plant Ecology, 2011, (7): 687-698. [13] Wang W, Liang C Z, Liu Z L, et al . Analysis of the plant individual behaviour during the degradation and restoring succession in steppe community. Acta Phytoecologica Sinica, 2000, 24(3): 268-274. [14] Connell J H, Slatyer R O. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist, 1977, 111: 1119-1144. [15] Bai Y F, Han X G, Wu J G, et al . Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431: 181-184. [16] Zhang Z H. Silent crisis-desertification and degeneration of grassland. Pratacultura Science, 2000, 17(2): 10-12. [17] Mcconnaughay K, Coleman J S. Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology, 1999, 80(8): 2581-2593. [18] Liu Z L, Wang W. The discussion about the mechanism of degradation and restoring succession in Inner Mongolia. Journal of Arid Land Resources and Environment, 2002, 16(1): 84-91. [19] Wang W, Liang C Z, Liu Z L, et al . Mechanism of degradation succession in Leymus chinensis+Stipa grandis steppe community. Acta Phytoecologica Sinica, 2000, (4): 468-472. [20] An H. Effect of grazing on morphological plasticity and biomass allocation of dominant species in desert steppe. Journal of Arid Land Resources and Environment, 2014, (11): 116-121. [21] Li J H, Li Z Q. Clonal morphological plasticity and biomass allocation pattern of Artemisia frigida and Potentilla acaulis under different grazing intensities. Acta Phytoecologica Sinica, 2002, (4): 435-440. [22] Huang H X, Zhao X Y, Zhang H X. Responses of Agriophyllum squarrosum phenotypic plasticity to the changes of soil nutrient and moisture contents and population density. Chinese Journal of Plant Ecology, 2008, (12): 2593-2598. [23] An Y, Han G D. The difference between the grass and soil in different stage of grassland deterioration. Grassland and China, 1999, (4): 31-36. [24] Clark C M, Tilman D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 2008, 451: 712-715. [25] Yang Y, Ji C, Ma W, et al . Significant soil acidification across northern China’s grasslands during 1980s-2000s. Global Change Biology, 2012, 18(7): 2292-2300. [26] Aber J D, Nadelhoffer K J, Steudler P, et al . Nitrogen saturation in northern forest ecosystems. Bioscience, 1989, 39(6): 286-378. [27] Bobbink R, Hicks K, Galloway J, et al . Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 2010, 20(1): 30-59. [28] Menge D N, Field C B. Simulated global changes alter phosphorus demand in annual grassland. Global Change Biology, 2007, 13(12): 2582-2591. [29] Liu N N, Tian Q Y, Zhang W H. Comparison of adaptive strategies to phosphorus-deficient soil between dominant species Artemisia frigida and Stipa krylovii in typical steppe of Nei Mongol. Chinese Journal of Plant Ecology, 2014, (9): 905-915. [30] Bai X, Cheng J H, Zheng S X, et al . Ecophysiological responses of Leymus chinensis to nitrogen and phosphorus additions in a typical steppe. Chinese Journal of Plant Ecology, 2014, 38(2): 103-115. [31] Xu M G, Li J M. Plant Nutrition Elements of Soil Chemistry[M]. Beijing: Graduate School of Chinese Academy of Agricultural Sciences, 2005. [32] Li X L. Effects of Irrigation and Phosphorus Fertilizer Application for Consecutive Years on Alfalfa Yield and Soil Environment[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. [33] Valladares F, Wright S J, Lasso E, et al . Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 2000, 81(7): 1925-1936. [34] Wu N E, Hai T. The effects of grazing on the morphological characteristics of Leymus chinensis and soil physical and chemical properties in typical grassland. Journal of Inner Mongolia Agricultural University: Natural Science Edition, 2015, (4): 71-76. [35] Zhao W. Physio-ecological Responses of Leymus chinensis to Overgrazing and Clipping[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006. [36] Yu Y J. The Changes in Eco-physiological and Epigenetic Features of Leymus chinensis in Responses to Warming and Nitrogen Addition[D]. Changchun: Northeast Normal University, 2014. [37] Li X L, Liu Z Y, Hou X Y, et al . Plant functional traits and their trade-offs in response to grazing: a review. Chinese Bulletin of Botany, 2015, 50(2): 159-170. [38] He M, Huang J H. Influence of grazing on seed production of Caragana microphylla . Chinese Bulletin of Botany, 2010, (1): 59-65. [39] Chen H J. The Response of Reproductive Characteristics and Ecological Stoichiometry of Main Plant Population to Stocking Rate in Inner Mongolia Desert Steppe[D]. Hohhot: Inner Mongolia Agricultural University, 2011. [40] Bai Y, Wu J, Clark C M, et al . Grazing alters ecosystem functioning and C∶N∶P stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 2012, 49(6): 1204-1215. [41] Frank D A. Ungulate and topographic control of nitrogen: phosphorus stoichiometry in a temperate grassland; soils, plants and mineralization rates. Oikos, 2008, 117(4): 591-601. [42] Smith S E. Variation in response to defoliation between populations of Bouteloua curtipendula var. caespitosa (Poaceae) with different livestock grazing histories. American Journal of Botany, 1998, 85(9): 1266-1272. [43] Geber M A, Watson M A, de Kroon H. Development and resource allocation in perennial plants: The significance of orgon preformation[M]//Plant Resource Allocation. New York: Academic Press, 1997. [44] Ren H Y, Zhen S X, Bai Y F. Effects of grazing on foliage biomass allocation of grassland communities in Xi Lin River Basin, Inner Mongolia. Chinese Journal of Plant Ecology, 2009, 33(6): 1065-1074. [45] Roy J, Winner W E, Pell E J. Response of Plants to Multiple Stresses[M]. USA: Academic Press, 2012. [46] Weigelt A, Bol R, Bardgett R D. Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia, 2005, 142(4): 627-635. [47] Wang S P, Wang Y F, Chen Z Z, et al . Sulphur concentration of soils and plants and its requirement for ruminants in the Inner Mongolia steppe of China. Grass and Forage Science, 2001, 56(4): 418-422. [48] Reich P B, Buschena C, Tjoelker M G, et al . Variation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply: a test of functional group differences. New Phytologist, 2003, 157(3): 617-631. [49] Ping X Y, Zhou G S, Sun J S. Advances in the study of photosynthate allocation and its controls. Chinese Journal of Plant Ecology, 2010, (1): 100-111. [50] Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 2004, 162(1): 9-24. [2] 胡启鹏, 郭志华, 李春燕, 等. 植物表型可塑性对非生物环境因子的响应研究进展. 林业科学, 2008, (5): 135-142. [3] 李西良, 侯向阳, 吴新宏, 等. 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报, 2014, (5): 440-451. [5] 谢永宏, 于丹, 耿显华. CO 2 浓度升高对沉水植物菹草叶表型及生理生化特征的影响. 植物生态学报, 2003, 27(2): 218-222. [6] 盛海燕, 李伟成, 常杰. 伞形科两种植物幼苗生长对光照强度的可塑性响应. 生态学报, 2006, (6): 1854-1861. [7] 陈书燕, 张甲林, 贾鹏, 等. 光竞争条件下邻域效应对植物高生长可塑性的影响. 兰州大学学报: 自然科学版, 2009, (6): 76-81. [8] 陶冶, 张元明, 全永威, 等. 准噶尔荒漠小山蒜的形态与生物量特征及其相互关系. 中国沙漠, 2012, (5): 1328-1334. [9] 耿宇鹏, 张文驹, 李博, 等. 表型可塑性与外来植物的入侵能力. 生物多样性, 2004, (4): 447-455. [10] 李雪华, 李晓兰, 蒋德明, 等. 科尔沁沙地70种草本植物个体和构件生物量比较研究. 干旱区研究, 2009, (2): 200-205. [11] 张文辉, 李红, 李景侠, 等. 秦岭独叶草种群个体和构件生物量动态研究. 应用生态学报, 2003, (4): 530-534. [12] 祝介东, 孟婷婷, 倪健, 等. 不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异. 植物生态学报, 2011, (7): 687-698. [13] 王炜, 梁存柱, 刘钟龄, 等. 草原群落退化与恢复演替中的植物个体行为分析. 植物生态学报, 2000, 24(3): 268-274. [16] 张自和. 无声的危机——荒漠化与草原退化. 草业科学, 2000, 17(2): 10-12. [18] 刘钟龄, 王炜. 内蒙古草原退化与恢复演替机理的探讨. 干旱区资源与环境, 2002, 16(1): 84-91. [19] 王炜, 梁存柱, 刘钟龄, 等. 羊草+大针茅草原群落退化演替机理的研究. 植物生态学报, 2000, (4): 468-472. [20] 安慧. 放牧干扰对荒漠草原优势植物形态可塑性及生物量分配的影响. 干旱区资源与环境, 2014, (11): 116-121. [21] 李金花, 李镇清. 不同放牧强度下冷蒿、星毛委陵菜的形态可塑性及生物量分配格局. 植物生态学报, 2002, (4): 435-440. [22] 黄迎新, 赵学勇, 张洪轩, 等. 沙米表型可塑性对土壤养分、水分和种群密度变化的响应. 应用生态学报, 2008, (12): 2593-2598. [23] 安渊, 韩国栋. 不同退化梯度草地植物和土壤的差异. 中国草地, 1999, (4): 31-36. [29] 刘娜娜, 田秋英, 张文浩. 内蒙古典型草原优势种冷蒿和克氏针茅对土壤低磷环境适应策略的比较. 植物生态学报, 2014, (9): 905-915. [30] 白雪, 程军回, 郑淑霞, 等. 典型草原建群种羊草对氮磷添加的生理生态响应. 植物生态学报, 2014, 38(2): 103-115. [31] 徐明岗, 李菊梅. 植物营养元素的土壤化学[M]. 北京: 中国农业科学院研究生院, 2005. [32] 李新乐. 连续多年灌水施磷肥对紫花苜蓿产量和土壤环境的影响[D]. 北京: 中国农业科学院, 2014. [34] 乌尼尔, 海棠. 放牧对典型草原羊草形态特征及土壤理化性质的影响. 内蒙古农业大学学报: 自然科学版, 2015, (4): 71-76. [35] 赵威. 羊草对过度放牧和刈割的生理生态响应[D]. 北京: 中国科学院研究生院(植物研究所), 2006. [36] 于英杰. 增温和施氮导致羊草生理生态与表观遗传变化[D]. 长春: 东北师范大学, 2014. [37] 李西良, 刘志英, 侯向阳, 等. 放牧对草原植物功能性状及其权衡关系的调控. 植物学报, 2015, 50(2): 159-170. [38] 何茂, 黄建辉. 放牧对小叶锦鸡儿种子产量的影响. 植物学报, 2010, (1): 59-65. [39] 陈海军. 荒漠草原主要植物种群繁殖性状及化学计量特征对载畜率的响应[D]. 呼和浩特: 内蒙古农业大学, 2011. [44] 任海彦, 郑淑霞, 白永飞. 放牧对内蒙古锡林河流域草地群落植物茎叶生物量资源分配的影响. 植物生态学报, 2009, 33(6): 1065-1074. [49] 平晓燕, 周广胜, 孙敬松. 植物光合产物分配及其影响因子研究进展. 植物生态学报, 2010, (1): 100-111. |