[1] Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627. [2] Wang Z Q, Du L L, Zhao M, et al . Differences in soil organic carbon and total nitrogen and their impact factors under different restoration patterns in the Loess Plateau. Chinese Journal of Applied Ecology, 2016, 27(3): 716-722. [3] Liang A H, Han X H, Zhao F Z, et al . Dynamics of soil carbon and nitrogen stocks following afforestation in gully region of Loess Plateau, China. Transactions of the Chinese Society of Agricultural Engineering, 2014, (23): 148-157. [4] Wang C M, Liu Y H, Shao B, et al . Quantifying the soil carbon changes following the afforestation of former arable land. Journal of Beijing Forestry University, 2007, 29(3): 112-119. [5] Chen D D, Li Q, Zou X Y, et al . How did soil organic carbon and total nitrogen change after grain for green in the Qinghai-Lake farm. Acta Agrestia Sinica, 2014, 22(3): 469-474. [6] Liu X T, Wei Y C, Yang X L, et al . Effects of different re-vegetation patterns on soil organic carbon and total nitrogen in the wind-water erosion crisscross region, China. Chinese Journal of Applied Ecology, 2016, 27(1): 1-11. [7] Hua J, Zhao S W, Zhang Y, et al . Distribution characteristics of labile organic carbon in soil aggregates in different stages of vegetation restoration of grassland in Yunwu Mountain. Acta Ecologica Sinica, 2009, 29(9): 4613-4619. [8] Liang A H, Han X H, Zhang Y, et al . Spatio-temporal response of soil carbon and nitrogen relation to the process of vegetation restoration in the gully region of Loess Plateau. Acta Agrestia Sinica, 2013, 21(5): 842-849. [9] Liu F C, Li H L, Dong Z, et al . Advances in research on enclosure effects on vegetation restoration and soil physicochemical property of degraded grassland. Science of Soil and Water Conservation, 2012, 10(5): 116-112. [10] He N P, Han X G, Yu G R. Carbon and nitrogen sequestration rate in long-term fenced grasslands in Inner Mongolia, China. Acta Ecologica Sinica, 2011, 31(15): 4270-4276. [11] Gao Y, Ma H, Chen J M, et al . Ecosystem carbon density of grasslands under different grazing exclusion ages in semiarid region of the Loess Plateau. Acta Agrestia Sinica, 2016, 24(1): 28-34. [12] Dai R F, Zhai R X, Ge Q S, et al . Topsoil organic carbon storage and its changes in Inner Mongolia grassland from the 1980s to 2010s. Acta Geographica Sinica, 2014, 69(11): 1651-1660. [13] Wei X R, Li X Z, Jia X X, et al . Accumulation of soil organic carbon in aggregates after forestations on abandoned farmland. Biology and Fertility of Soils, 2013, 49(6): 637-646. [14] Hu Y L, Zeng D H, Jiang T. Effects of afforested poplar plantations on the stock and distribution of C, N, P at Keerqin Sandy Lands. Acta Ecologica Sinica, 2009, 29(8): 4206-4214. [15] Post W M, Kwon K C. Soil carbon sequestration and land-use change: Processes and potential. Global Change Biology, 2000, 6: 317-327. [16] Song T Q, Peng W X, Zeng F P, et al . Soil ecological effects of converting cropland to forest and grassland in depressions between Karst hills. Acta Pedologica Sinica, 2011, 48(6): 1219-1226. [17] Su Y Z, Liu W J, Yang R, et al . Carbon sequestration effect following retirement of degraded croplands into alfalfa forage land in the middle of Hexi Corridor region, northwest China. Acta Ecologica Sinica, 2009, 29(12): 6385-6391. [18] Chen J, Hu T M, Chen J M. Responses of vegetation restoration to climate change during the past 30 years in enclosed grassland of Yunwu Mountain in semi-arid region of the Loess Plateau. Acta Ecologica Sinica, 2010, 30(10): 2630-2638. [19] Deng L, Sweeney S, Shangguan Z P. Grassland responses to grazing disturbance: plant diversity changes with grazing intensity in a desert steppe. Grass and Forage Science, 2014, 69(3): 524-533. [20] Bao S D. Soil Agro-Chemistrical Analysis[M] . Vision 3.Beijing: China Agricultural Press, 1999: 30. [21] Deng L, Zhang Z N, Shangguan Z P. Long-term fencing effects on plant diversity and soil properties in China. Soil & Tillage Research, 2014, 137: 7-15. [22] Deng L, Sweeney S, Shangguan Z P. Long-term effects of natural enclosure: carbon stocks, sequestration rates and potential for grassland ecosystems in the Loess Plateau. Clean-Soil Air Water, 2014, 42(5): 617-625. [23] Weng B Q, Zheng X Z, Ding H, et al . Effects of vegetation restoration on soil carbon and nitrogen cycles: A review. Chinese Journal of Applied Ecology, 2013, 24(12): 3610-3616. [24] Wan H, Liu W G, Wei J. Soil ecological effects of converting cropland to forest and grassland in depressions between Karst hills. Acta Pedologica Sinica, 2015, 34(1): 100-105. [25] Su J, Zhao S W, Ma J D, et al . Influence of man-made vegetation on carbon pool in southern ningxia region in Loess Plateau. Research of Soil and Water Conservation, 2005, 12(3): 50-52. [26] Dong G Q, Zhang Y A. Effect of different vegetation on soil nitrogen in loess hilly and gully area. Research of Soil and Water Conservation, 2009, 16(5): 190-193. [27] Yang J, Sun Z J, Yang H L, et al . Effects of enclosure period on carbon and nitrogen characteristics and components of soil organic carbon in Artemisia desert. Pratacultural Science, 2016, 33(4): 564-572. [28] Zhang F H, Liang J, Pang W. Effects of different restoration patterns on soil biological characteristics and soil physical and chemical properties of abandoned salinized field in Xinjiang. Journal of Soil and Water Conservation, 2013, 27(5): 169-172. [2] 王志齐, 杜兰兰, 赵慢, 等. 黄土区不同退耕方式下土壤碳氮的差异及其影响因素. 应用生态学报, 2016, 27(3): 716-722. [3] 梁爱华, 韩新辉, 赵发珠, 等. 黄土高原丘陵区退耕还林地土壤碳氮库的动态变化(英文). 农业工程学报, 2014, (23): 148-157. [4] 王春梅, 刘艳红, 邵彬, 等. 量化退耕还林后土壤碳变化. 北京林业大学学报, 2007, 29(3): 112-119. [5] 陈懂懂, 李奇, 邹小艳, 等. 青海湖农场退耕还林草后的土壤碳氮变化. 草地学报, 2014, 22(3): 469-474. [6] 刘学彤, 魏艳春, 杨宪龙, 等. 水蚀风蚀交错带不同退耕模式对土壤有机碳及全氮的影响. 应用生态学报, 2016, 27(1): 1-11. [7] 华娟, 赵世伟, 张扬, 等.云雾山草原区不同植被恢复阶段土壤团聚体活性有机碳分布特征. 生态学报, 2009, 29(9): 4613-4619. [8] 梁爱华, 韩新辉, 张扬, 等. 纸坊沟流域退化土壤碳氮关系对植被恢复的时空响应. 草地学报, 2013, 21(5): 842-849. [9] 刘凤婵, 李红丽, 董智, 等.封育对退化草原植被恢复及土壤理化性质影响的研究进展.中国水土保持科学, 2012, 10(5): 116-112. [10] 何念鹏, 韩兴国, 于贵瑞.长期封育对不同类型草地碳贮量及其固持速率的影响. 生态学报, 2011, 31(15): 4270-4276. [11] 高阳, 马虎, 程积民, 等. 黄土高原半干旱区不同封育年限草地生态系统碳密度. 草地学报, 2016, 24(1): 28-34. [12] 戴尔阜, 翟瑞雪, 葛全胜, 等. 1980s-2010s内蒙古草地表层土壤有机碳储量及其变化. 地理学报, 2014, 69(11): 1651-1660. [14] 胡亚林, 曾德慧, 姜涛. 科尔沁沙地退耕杨树人工林生态系统C、N、P储量和分配格局. 生态学报, 2009, 29(8): 4206-4214. [16] 宋同清, 彭晚霞, 曾馥平, 等. 喀斯特峰丛洼地退耕还林还草的土壤生态效应. 土壤学报, 2011, 48(6): 1219-1226. [17] 苏永忠, 刘文杰, 杨荣, 等. 河西走廊中段绿洲退化土地退耕种植苜蓿的固碳效应. 生态学报, 2009, 29(12): 6385-6391. [18] 程杰, 呼天明, 程积民. 黄土高原半干旱区云雾山封禁草原30年植被恢复对气候变化的响应. 生态学报, 2010, 30(10): 2630-2638. [20] 鲍士旦.土壤农化分析[M] . 第三版. 北京: 中国农业出版社, 1999: 30. [23] 翁伯琦, 郑祥洲, 丁洪, 等. 植被恢复对土壤碳氮循环的影响研究进. 应用生态学报, 2013, 24(12): 3610-3616. [24] 万昊, 刘卫国, 魏杰. 黄土高原植被演替对土壤碳库及δ(13)C的影响. 生态学杂志, 2015, 34(1): 100-105. [25] 苏静, 赵世伟, 马继东, 等. 宁南黄土丘陵区不同人工植被对土壤碳库的影响. 水土保持研究, 2005, 12(3): 50-52. [26] 董贵青, 张养安. 黄土丘陵沟壑区不同植被覆盖对土壤氮素的影响. 水土保持研究, 2009, 16(5): 190-193. [27] 杨静, 孙宗玖, 杨合龙, 等. 封育年限对蒿类荒漠土壤有机碳组分及其碳、氮特征的影响. 草业科学, 2016, 33(4): 564-572. [28] 张凤华, 梁静, 庞玮. 不同恢复模式对新疆弃耕地土壤理化性质和生物学特性的影响. 水土保持学报, 2013, 27(5): 169-172. |