欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2017, Vol. 26 ›› Issue (4): 169-177.DOI: 10.11686/cyxb2016192

• 研究论文 • 上一篇    下一篇

盐处理对甜菜生长和渗透调节物质积累的影响

伍国强1, *, 冯瑞军1, 李善家1, 王春梅2, 焦琦1, 刘海龙1   

  1. 1.兰州理工大学生命科学与工程学院,甘肃 兰州 730050;
    2.中国农业科学院兰州畜牧与兽药研究所,甘肃 兰州 730050
  • 收稿日期:2016-05-09 出版日期:2017-04-20 发布日期:2017-04-20
  • 作者简介:伍国强(1976-),男,甘肃通渭人,副教授,博士。
  • 基金资助:
    国家自然科学基金项目(31260294和31460101),兰州市人才创新创业专项(2014-2-6)和兰州理工大学“红柳杰出人才”培养计划项目(J201404)资助

Effects of salt treatments on growth and osmoregulatory substance accumulation in sugar beet (Beta vulgaris)

WU Guo-Qiang1, *, FENG Rui-Jun1, LI Shan-Jia1, WANG Chun-Mei2, JIAO Qi1, LIU Hai-Long1   

  1. 1.School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
    2.Lanzhou Institute of Husbandry and Pharmaceutical Science, CAAS, Lanzhou 730050, China
  • Received:2016-05-09 Online:2017-04-20 Published:2017-04-20

摘要: 采用室内盆栽法,探究了不同浓度NaCl (0、50、100和150 mmol/L)对60 d龄甜菜植株生长及渗透调节物质积累的影响。结果表明, 添加50、100和150 mmol/L NaCl明显促进甜菜植株生长,维持良好水分状况。与对照(0 mmol/L)相比,不同浓度NaCl均显著增加甜菜叶片、叶柄和贮藏根的鲜重和干重(P<0.05)。高盐(150 mmol/L)条件下,甜菜叶片和叶柄Na+浓度较对照分别增加4.4和4.9倍(P<0.05),贮藏根和侧根Na+相对分配比例分别降低44%和53%(P<0.05);叶片和侧根K+浓度分别降低39%和55%(P<0.05),叶柄和贮藏根K+相对分配比例分别增加35%和80%(P<0.05)。盐处理下贮藏根蔗糖含量降低44%~50%(P<0.05),果糖含量减少31%~36%(P<0.05),而葡萄糖含量维持在稳定水平。另外,高盐使贮藏根的脯氨酸浓度较对照增加93%(P<0.05)。由此可见,甜菜通过叶片和叶柄积累大量Na+、根部维持K+的稳态平衡以及提高脯氨酸含量,以适应盐渍生境。

Abstract: In this study, the effects of NaCl at different concentrations (0, 50, 100 and 150 mmol/L) on the growth and osmoregulatory substance accumulation in 60-day-old sugar beet (Beta vulgaris) plants were investigated in pot experiments. The addition of 50, 100, and 150 mmol/L NaCl promoted the growth of sugar beet plants and maintained water conditions well. Compared with the control (0 mmol/L), various concentrations of NaCl significantly increased the fresh weights and dry weights of the leaf blade, leaf petiole, and storage root of B. vulgaris plants (P<0.05). Compared with the control, the high-salt treatment (150 mmol/L) resulted in marked increases in Na+ concentrations in the leaf blade and leaf petiole (4.4- and 4.9-fold, respectively; P<0.05), and decreased the relative distribution of Na+ in storage roots and lateral roots (by 44% and 53%, respectively; P<0.05). The high-salt treatment also reduced the K+ concentrations in the leaf blade and lateral root by 39% and 55%, respectively (P<0.05), and increased the relative distribution of K+ in the leaf petiole and storage root by 35% and 80%, respectively (P<0.05). The salt treatments reduced sucrose contents by 44%-50% (P<0.05) and fructose contents in the storage root by 31%-36% (P<0.05), whereas glucose contents were unaffected. The high-salt treatment increased the proline concentration in the storage root by 93%, compared with the control (P<0.05). These results suggested that sugar beet plants can adapt to saline conditions by accumulating the large quantities of Na+ in the leaf blade and leaf petiole, by maintaining K+ homeostasis, and by enhancing the accumulation of proline in storage roots.