[1] Zhang Z B, Zhang J H. Water-saving agriculture: an urgent issue. Journal of Integrative Plant Biology, 2007, 49(10): 1409. [2] Li Z, Peng Y, Shu X Y. Physiological responses of white clover by different leaf types associated with anti-oxidative enzyme protection and osmotic adjustment under drought stress. Acta Prataculturae Sinica, 2013, 22(2): 257-263. 李州, 彭燕, 苏星源. 不同叶型白三叶抗氧化保护及渗透调节生理对干旱胁迫的响应. 草业学报, 2013, 22(2): 257-263. [3] Jin Z M, Sha W. Study on drought resistance of Trifolium repens linn seedlings. Northern Horticulture, 2010, 18: 50-52. 金忠民, 沙伟. 白三叶抗旱生理的研究. 北方园艺, 2010, 18: 50-52. [4] Mercer C F, Watson R N. Effects of nematicides and plant resistance on white clover performance and seasonal populations of nematodes parasitizing white clover in grazed pasture. The Journal of Nematology, 2007, 39: 298-304. [5] Beligni M V, Lamattina L. Nitric oxide stimulates seed germination and deetiolation, and inhibits hypocotyls elongation, three light-inducible responses in plants. Planta, 2000, 210(2): 215-221. [6] Zhang W L, Shen W B, Xu L L. Signal functions of nitric oxide in plants. Chemistry of Life, 2002, 22(1): 61-62. 张文利, 沈文飚, 徐朗莱. 一氧化氮在植物体内的信号分子作用. 生命的化学, 2002, 22(1): 61-62. [7] Chandok M R, Ytterberg A J, Wijk van K J, et al . The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the protein of the glycine decarboxylase complex. Cell, 2003, 113(4): 469-482. [8] Tu J, Shen W B, Xu L L. Regulation of nitric oxide on the aging process of wheat leaves. Acta Botanica Sinica, 2003, 45(9): 1055-1062. 屠洁, 沈文飚, 徐朗莱. 一氧化氮对小麦叶片老化过程的调节. 植物学报, 2003, 45(9): 1055-1062. [9] Xiong J, Fu G F, Yang Y J, et al . Roles of nitric oxide in growth of plant root. Journal of Huazhong Agricultural University, 2011, 30(3): 375-383. 熊杰, 符冠富, 杨永杰, 等. 一氧化氮在植物根系生长发育过程中的作用研究进展. 华中农业大学学报, 2011, 30(3): 375-383. [10] Qiao W H, Yang Q W. Nitric oxide synthesis in plant and responses to abiotic stress. Journal of China Agricultural University, 2009, 14(3): 1-6. 乔卫华, 杨庆文. 植物体内一氧化氮的合成及其对非生物胁迫响应的研究进展. 中国农业大学学报, 2009, 14(3): 1-6. [11] Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kubis J. Interaction between polyamine and nitric oxide signaling in adaptive responses to drought in Cucumber. Journal of Plant Growth Regulation, 2009, 28(2): 177-186. [12] Li J, Wu H M, Chen H P. Exogenous carbon monoxide and nitric oxide alleviate the oxidative damage in rice seed germination under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(4): 731-738. 李江, 吴黄铭, 陈惠萍. 外源CO和NO对水稻种子萌发过程中干旱胁迫损伤的缓解效应. 西北植物学报, 2011, 31(4): 731-738. [13] Sun L R, Hao F S, Lü J Z, et al . Effects of exogenous nitric oxide on growth and physiological characteristics of ryegrass seedlings under salt stress. Acta Ecologica Sinica, 2008, 11(28): 5714-5722. 孙立荣, 郝福顺, 吕建洲, 等. 外源一氧化氮对盐胁迫下黑麦草幼苗生长及生理特性的影响. 生态学报, 2008, 11(28): 5714-5722. [14] Liu J X, Wang X, Wang R J, et al . Effects of exogenous nitric oxide donor sodium nitroprusside on alkali resistance of Lolium perenne seedlings. Chinese Journal of Ecology, 2011, 30(10): 2173-2178. 刘建新, 王鑫, 王瑞娟, 等. 外源一氧化氮供体硝普钠对黑麦草幼苗耐碱性的影响. 生态学杂志, 2011, 30(10): 2173-2178. [15] Qiu Z B, Li J T, Guo J L. Effect of exogenous nitric oxide on seedling growth and physiological characteristics of wheat under drought stress. Journal of Anhui Agricultural Sciences, 2008, 36(17): 7095-7097. 邱宗波, 李金亭, 郭君丽. 外源一氧化氮对干旱胁迫小麦幼苗生长和生理特性的影响. 安徽农业科学, 2008, 36(17): 7095-7097. [16] Wang F, Zhao Y J, Wang H N. Regulation of membrane lipid preoxidation by nitric oxide in maize seedlings under drought stress. Agricultural Research in the Arid Areas, 2015, 33(5): 75-79. 王芳, 赵有军, 王汉宁. 外源NO对干旱胁迫下玉米幼苗膜脂过氧化的调节效应. 干旱地区农业研究, 2015, 33(5): 75-79. [17] Zhao C Y, Wang Y J, Liu H, et al . Research progress of nitric oxide signal transduction in plant. Food Research and Development, 2015, 36(22): 180-183. 赵朝宇, 王亚喆, 刘慧, 等. 植物一氧化氮信号转导的研究进展. 食品研究与开发, 2015, 36(22): 180-183. [18] Jian Z, Han H, Zhang T, et al . Mechano chemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling. Science Signaling, 2014, 317(7): 1-20. [19] Corpas F J, Barroso J B, Carreras A, et al . Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta, 2006, 224(2): 246-254. [20] Liu G H, Liu Q, Hou L X. NO may function in the downsream of Ca 2+ in ethylene induced stomatal closure in Vicia faba L. Journal of Molecular Cell Biology, 2009, 42(2): 145-147. [21] Barrs H D, Weatherley P E. A re-examination of the relative turgidity techniques for estimating water deficits in leaves. Australian Journal of Biological Sciences, 1962, 15(3): 413-428. [22] Blum A, Ebercon A. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 1981, 21(1): 43-47. [23] Dhindsa R S, Dhindsa P P, Thorpe T A. Leaf senescence: correlated with increased leaves of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 1981, 32(1): 93-101. [24] Giannopolities C N, Ries S K. Superoxide dismutase: I. Occurrence in higher plants. Plant Physiology, 1977, 59(2): 309-314. [25] Chance B, Meahly A C. Assay of catalase and peroxidase. Methods in Enzymology, 1955, 136(2): 764-775. [26] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1981, 22(5): 867-880. [27] Wang X J, Li Z, Peng Y. The antioxidant enzyme activities and gene expression induced by spermidine in leaves of white clover. Acta Prataculturae Sinica, 2015, 24(4): 140-147. 王晓娟, 李州, 彭燕. NO参与Spd诱导白三叶抗氧化酶活性及其基因表达. 草业学报, 2015, 24(4): 140-147. [28] Beligni M, Lamattina L. Is nitric oxide toxic or protective. Trends in Plant Science, 1999, 4(8): 299-300. [29] Li H P, Zhou Q P, Yan H B, et al . Effects of sodium nitroprusside on physiological characteristics of oat seedling under salt stress. Pratacultural Science, 2014, 31(9): 1739-1745. 李海萍, 周青平, 颜红波, 等. 硝普钠对燕麦幼苗苗期盐胁迫缓解作用的生理机制. 草业科学, 2014, 31(9): 1739-1745. [30] García-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology, 2001, 126(3): 1196-1204. [31] Li H, Zhao W C, Zhao H J, et al . Effects of exogenous nitric oxide donor sodium nitroprusside on ATPase activity and membrane lipid peroxidation in wheat ( Triticum aestivum L. cv. ‘Luohan 6’) seedling leaves under drought stress. Plant Physiology Communication, 2009, 45(5): 455-458. 李慧, 赵文才, 赵会杰, 等. 外源一氧化氮供体硝普钠对干旱胁迫下小麦幼苗叶中ATP酶活性和膜脂过氧化的影响. 植物生理学通讯, 2009, 45(5): 455-458. [32] Hui Z L, Li Z L, Li C Z, et al . Influences of exogenous nitric oxide donor SNP on seed germination and seedling resistance physiology in Festuca arundinacea under PEG simulated drought stress. Acta Agriculturae Boreali-Sinica, 2013, 28(4): 86-92. 回振龙, 李自龙, 李朝周, 等. 外源NO供体SNP对PEG模拟干旱胁迫下高羊茅种子萌发及幼苗抗性生理的影响. 华北农学报, 2013, 28(4): 86-92. [33] Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50(4): 601-639. [34] Reddy A R, Ramachandra R K, Chaitanya V, et al . Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 2004, 161(11): 1189-1202. [35] Sharma P, Jha A B, Dubey R S, et al . Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, http: //dx.doi.org/10.1155/2012/217037. [36] Ashraf M, Harris P J C. Photosynthesis under stressful environments: an overview. Photosynthetica, 2013, 51(2): 163-190. [37] Foyer C H, Deascouveries P, Kunert K J. Protection against oxygen radicals: important defense mechanism studied in transgenic plants. Plant Cell and Environment, 1994, 17(5): 507-523. [38] Moller I M, Jensen P E, Hansson A. Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 2007, 58(1): 459-481. [39] Bian S M, Jiang Y W. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of kentucky bluegrass in response to drought stress and recovery. Scientia Horticulturae, 2009, 120: 264-270. |