[1] Dacosta M. Research advances in mechanisms of turfgrass tolerance to abiotic stresses: from physiology to molecular biology. Critical Reviews in Plant Sciences, 2014, 33(2/3): 141-189. [2] Lü Y W, He J Y, Bai X M, et al . Evaluation of physiological responses and resistances of nine wild Poa to low temperature. Acta Agrestia Sinica, 2014, 22(2): 326-333. 吕优伟, 贺佳圆, 白小明, 等. 9个野生早熟禾对低温胁迫的生理响应及苗期抗寒性评价. 草地学报, 2014, 22(2): 326-333. [3] Zhou Q P, Yan H B, Han Z L, et al .Taming breeding of rhizom-type forage variety Poa pratensis L. var.Gaud.cv. Qinghai in apline area. Acta Agrestia Sinica, 2008, 16(4): 328-335. 周青平, 颜红波, 韩志林, 等. 高原根茎型优质草种“青海扁茎早熟禾”的驯化选育. 草地学报, 2008, 16(4): 328-335. [4] Liu W H. Seasonal dynamics of underground biomass of Poa pratensis var. anceps cv. Qinghai. Chinese Journal of Grassland, 2009, 31(5): 47-52. 刘文辉. 青海扁茎早熟禾地下生物量季节动态变化. 中国草地学报, 2009, 31(5): 47-52. [5] Liu W H, Zhou Q P, Yan H B, et al . Study on dynamics of aboveground biomass of Poa pratensis var. anceps Gaud. cv. Qinghai. Acta Prataculturae Sinica, 2009, 18(2): 18-24. 刘文辉, 周青平, 颜红波, 等. 青海扁茎早熟禾种群地上生物量积累动态. 草业学报, 2009, 18(2): 18-24. [6] Yang Y L. Study on Characters of Reproduction of Poa pratensis var. anceps Gaud. cv. Qinghai. Doctoral dissertation. Xining: Qinhai University, 2009. 杨艳莉. 青海扁茎早熟禾( Poa pratensis var. anceps Gaud cv.Qinghai)繁殖特性的研究[D]. 西宁: 青海大学, 2009. [7] Yang Y L, Zhou Q P, Yan H B, et al . The effects of row distance on clone reproduction of Poa pratensis var. anceps cv. Qinghai. Pratacultural Science, 2009, 26(5): 66-71. 杨艳莉, 周青平, 颜红波, 等. 行距对青海扁茎早熟禾无性繁殖影响的研究. 草业科学, 2009, 26(5): 66-71. [8] Wu L, Zhou Q P, Liu W H, et al . Population characteristics of Poa pratensis cv. Qinghai. Pratacultural Science, 2011, 28(6): 1070-1074. 伍磊, 周青平, 刘文辉, 等. 青海扁茎早熟禾种群变化特征. 草业科学, 2011, 28(6): 1070-1074. [9] Wu L, Zhou Q P, Liu W H, et al . Age structure features of cloning population hibernation of Poa pratensis var. anceps cv. Qinghai. Pratacultural Science, 2011, 28(11): 1967-1971. 伍磊, 周青平, 刘文辉, 等. 青海扁茎早熟禾冬眠无性系种群年龄结构特征. 草业科学, 2011, 28(11): 1967-1971. [10] Huang B. Recent advances in drought and heat stress physiology of turfgrass-a review. Acta Horticulturae, 2004, 661: 185-192. [11] Mittler R, Vanderauwera S, Gollery M, et al . Reactive oxygen gene network of plants. Trends in Plant Science, 2004, 9(9): 490-498. [12] Janda T, Szalai G, Rios-Gonzalez K, et al . Comparative study of frost tolerance and antioxidant activity in cereals. Plant Science, 2003, 164(2): 301-306. [13] Hoffman L, Dacosta M, Ebdon J S, et al . Effects of drought preconditioning on freezing tolerance of perennial ryegrass. Environmental & Experimental Botany, 2012, 79(2): 11-20. [14] Zhang X, Ervin E H, Labranche A J. Metabolic defense responses of seeded bermudagrass during acclimation to freezing stress. Crop Science, 2006, 46(6): 2598-2605. [15] Kazemi-Shahandashti S, Maali-Amiri R, Zeinali H, et al . Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings. Journal of Plant Physiology, 2014, 171(13): 1106-1116. [16] Zhang L, Ren J, Li T, et al . De novo Transcriptome sequencing of cold-treated kentucky bluegrass ( Poa pratensis ) and analysis of the genes involved in cold tolerance. Journal of Horticulture, 2016, 8: 1-9. [17] Hoagland D R, Arnon D I. The water-culture method for growing plants without soil circular. California Agricultural Experiment Station, 1950, 347: 357-359. [18] Schneider K, Schlegel H G. Production of superoxide radicals by soluble hydrogenase from Alcaligenes eutrophus H16. Biochemical Journal, 1981, 193(1): 99-107. [19] Liu Z J, Guo Y K, Bai J G. Exogenous hydrogen peroxide changes antioxidant enzyme activity and protects ultrastructure in leaves of two cucumber ecotypes under osmotic stress. Journal of Plant Growth Regulation, 2010, 29(2): 171-183. [20] Heath R L, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry & Biophysics, 1968, 125(1): 189-198. [21] de Azevedo N A, Prisco J T, Eneas-Filho J, et al . Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. Journal of Plant Physiology, 2005, 162(10): 1114-1122. [22] Chen Y, Hu B, Tan Z, et al . Selection of reference genes for quantitative real-time PCR normalization in creeping bentgrass involved in four abiotic stresses. Plant Cell Reports, 2015, 34(10): 1825-1834. [23] Elia A C, Galarini R, Taticchi M I, et al . Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicology and Environmental Safety, 2003, 55(2): 162-167. [24] Nahar K, Hasanuzzaman M, Alam M M, et al . Insights into spermine-induced combined high temperature and drought tolerance in mung bean: osmoregulation and roles of antioxidant and glyoxalase system. Protoplasma, 2016, 254(1): 1-16. [25] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55: 373-399. [26] Knörzer O C, Burner J, Boger P. Alterations in the antioxidative system of suspension-cultured soybean cells ( Glycine max ) induced by oxidative stress. Physiologia Plantarum, 1996, 97(2): 388-396. [27] Bian S, Jiang Y. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of kentucky bluegrass in response to drought stress and recovery. Scientia Horticulturae, 2009, 120(2): 264-270. [28] Hui Z M, Wang Z Z, Hu Y, et al . Effects of 24-epibrassinolide on the antioxidant system and osmotic adjustment substance in grape seedlings ( V. vinifera L.) under chilling stress. Scientia Agricultural Sinica, 2013, 46(5): 1005-1013. 惠竹梅, 王智真, 胡勇, 等. 24-表油菜素内酯对低温胁迫下葡萄幼苗抗氧化系统及渗透调节物质的影响. 中国农业科学, 2013, 46(5): 1005-1013. [29] Prasad T K, Anderson M D, Martin B A, et al . Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. The Plant Cell, 1994, 6(1): 65-74. [30] Xing X, Zhou Q, Xing H, et al . Early abscisic acid accumulation regulates ascorbate and glutathione metabolism in soybean leaves under progressive water stress. Journal of Plant Growth Regulation, 2016, 35(3): 1-12. [31] Skyba M, Petijová L, Košuth J, et al . Oxidative stress and antioxidant response in Hypericum perforatum L. plants subjected to low temperature treatment. Journal of Plant Physiology, 2012, 169(10): 955-964. [32] Noctor G, Foyer C H. Ascorbate and glutathione: Keeping active oxygen under control. Plant Biology, 1998, 49(49): 249-279. [33] Xu Z, Zhou G, Shimizu H. Plant responses to drought and rewatering. Plant Signaling & Behavior, 2010, 5(6): 649-654. [34] Xu L. Antioxidant enzyme activities and gene expression patterns in leaves of kentucky bluegrass in response to drought and post-drought recovery. Journal of the American Society for Horticulturalence, 2011, 136(4): 247-255. [35] Puyang X, An M, Han L, et al . Protective effect of spermidine on salt stress induced oxidative damage in two kentucky bluegrass ( Poa pratensis L.) cultivars. Ecotoxicology and Environmental Safety, 2015, 117: 96-106. [36] Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002, 14(8): 1675-1690. [37] Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 2006, 57: 781-803. [38] Klemens P A, Patzke K, Deitmer J, et al . Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis . Plant Physiology, 2013, 163(3): 1338-1352. [39] Martinez J, Perez-Serrano J, Bernadina W E, et al . Stress response to cold in Trichinella species. Cryobiology, 2001, 43(4): 293-302. |