[1] Kong X P, Zhang M L, de Smet I, et al . Designer crops: Optimal root system architecture for nutrient acquisition. Trends in Biotechnology, 2014, 32: 597-598. [2] Plaza-Bonilla D, Álvaro-Fuentes J, Hansen N C, et al . Winter cereal root growth and aboveground-belowground biomass ratios as affected by site and tillage system in dryland Mediterraneanconditions. Plant and Soil, 2014, 374: 925-939. [3] Wen W L, Guo X Y, Zhao C J, et al . Crop roots configuration and visualization: A review. Scientia Agricultura Sinica, 2015, 48(3): 436-448. 温维亮, 郭新宇, 赵春江, 等. 作物根系构型三维探测与重建方法研究进展. 中国农业科学, 2015, 48(3): 436-448. [4] Song Q H, Zhao C Z, Shi Y C, et al . Fractal root system of Melica przewalskyi along different aspect in degraded grassland. Chinese Journal of Plant Ecology, 2015, 39(8): 816-824. 宋清华, 赵成章, 史元春, 等. 高寒草地甘肃臭草根系分形结构的坡向差异性. 植物生态学报, 2015, 39(8): 816-824. [5] Guo J H, Zeng F J, Li C J, et al . Root architecture and ecological adaptation strategies in three shelterbelt plant species in the southern Taklimakan Desert. Chinese Journal of Plant Ecology, 2014, 38(1): 36-44. 郭京衡, 曾凡江, 李尝君, 等. 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略. 植物生态学报, 2014, 38(1): 36-44. [6] Eshel A. On the fractal dimensions of a root system. Plant, Cell and Environment, 1998, 21: 247-251. [7] Walk T C, van Erp E, Lynch J P. Modelling applicability of fractal analysis to efficiency of soil exploration by roots. Annals of Botany, 2004, 94: 119-128. [8] Malamy J E. Intrinsic and environmental response pathways that regulate root system architecture. Plant, Cell & Environment, 2005, 28: 67-77. [9] Guswa A J. Effect of plant uptake strategy on the water optimal root depth. Water Resources Research, 2010, 46: W09601, doi:10.1029/2010WR009122. [10] Chaila S, Diaz L, Sobrero M T, et al . Competencia de Sicyos polyacanthus en caña de azúcar interference of Sicyos polyacanthus in sugarcane. Planta Daninha, 2004, 22(4): 545-551. [11] Bouma T J, Nielsen K L, Vanhal J, et al . Root system topology and diameter distribution of species from habitats differing in inundation frequency. Functional Ecology, 2001, 15: 360-369. [12] Oppelt A L, Kurth W, Godbold D L. Topology, scaling relations and Leonardo’s rule in root systems from African tree species. Tree Physiology, 2001, 21: 117-128. [13] Song Q H, Zhao C Z, Shi Y C, et al . Trade-off between root forks and link length of Melica przewalskyi on different aspects of slopes. Chinese Journal of Plant Ecology, 2015, 39(6): 577-585. 宋清华, 赵成章, 史元春, 等. 不同坡向甘肃臭草根系分叉数和连接长度的权衡关系. 植物生态学报, 2015, 39(6): 577-585. [14] Zheng W, Zhu J Z, Kuerban, et al . Dynamics of interspecific competition of legume-grass mixture under different mixed sowing patterns. Acta Agresia Sinica, 2010, 18(4): 568-575. 郑伟, 朱进忠, 库尔班, 等. 不同混播方式下豆禾混播草地种间竞争动态研究. 草地学报, 2010, 18(4): 568-575. [15] Schenk H J. Root competition: beyond resource depletion. Journal of Ecology, 2006, 94(4): 725-739. [16] Craine J M. Competition for nutrients and optimal root allocation. Plant and Soil, 2006, 285(1/2): 171-185. [17] Fransen B, Blijjenberg J, de Kroon H. Root morphological and physiological plasticity of perennial grass species and the exploitation of spatial and temporal heterogeneous nutrient patches. Plant and Soil, 1999, 211(2): 179-189. [18] Fitter A H. Architecture and biomass allocation as components of the plastic response of root system to soil heterogeneity//Caldwell M M, Peary R W. Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Process Above and Belowground. San Diego: Academic Press, 1994: 305-324. [19] Hao Y R, Lao X R, Zhao B Q, et al . Effect of separating root method on wheat and corn intercropping system. Journal of Triticeae Crops, 2003, 23(1): 71-74. 郝艳如, 劳秀荣, 赵秉强, 等. 隔根对小麦/玉米间套种植生长特性的影响. 麦类作物学报, 2003, 23(1): 71-74. [20] Song R, Mu Y, Wang Y L, et al . Effects of intercropping of maize and soybean on the morphological character of roots. Journal of Northeast Normal University (Natural Science Edition), 2002, 34(3): 83-86. 宋日, 牟瑛, 王玉兰, 等. 玉米、大豆间作对两种作物根系形态特征的影响.东北师范大学学报(自然科学版), 2002, 34(3): 83-86. [21] Li S M. Mechanism of Interspecific Facilitation on Phosphorus Uptake by Crops in Intercropping System. Beijing: China Agriculture University, 2004. 李淑敏. 间作作物吸收磷的种间促进作用机制研究. 北京: 中国农业大学, 2004. [22] Ma Z H, Che R J, Wang H Y, et al . Effect of different seeding rates and planting patterns on root morphological traits and root vigor of super-high-yield soybean cultivars. Scientia Agricultura Sinica, 2015, 48(6): 1084-1094. 马兆惠, 车仁君, 王海英, 等. 种植密度和种植方式对超高产大豆根系形态和活力的影响.中国农业科学, 2015, 48(6): 1084-1094. [23] Eekerena N V, Bosa M, Wita Jan de, et al . Effect of individual grass species and grass species mixtures on soil quality as related to root biomass and grass yield. Applied Soil Ecology, 2010, 45(3): 275-283. [24] Li L, Zhang F S, Li X L, et al . Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. Nutrient Cycling in Agroecosystems, 2003, 65(1): 61-71. [25] Li L, Li S M, Zhou L L, et al . Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus deficient soils. PNAS, 2007, 104(27): 11192-11196. [26] Li W X. Nitrate Accumulation in Soil and Nutrient Acquisition by Intercropped Wheat, Maize and Faba Bean. Beijing: China Agriculture University, 2001. 李文学. 小麦/玉米/蚕豆间作系统中氮、磷吸收利用及其环境效应. 北京: 中国农业大学, 2001. [27] Zhang Y K, Chen F J, Li L, et al . The role of maize root size in phosphorus uptake and productivity of maize/faba bean and maize/wheat intercropping systems.Scientia Sinica (Life Science), 2012, 42(10): 841-849. 张义凯, 陈范骏, 李隆, 等. 不同类型的玉米根系对间作体系磷高效吸收以及生产力的影响. 中国科学: 生命科学, 2012, 42(10): 841-849. [28] Li Y Y, Hu H S, Cheng X, et al . Effects of interspecific interactions and nitrogen fertilization rates on above-and below-growth in faba bean/mazie intercropping system. Acta Ecologica Sinica, 2011, 31(6): 1617-1630. 李玉英, 胡汉升, 程序, 等. 种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响. 生态学报, 2011, 31(6): 1617-1630. [29] Cui H, Li L Y, Xie X L, et al . Differences in root architecture of several Stylosanthes genotypes and their phosphorus efficiency. Acta Prataculturae Sinica, 2013, 22(5): 265-271. 崔航, 李立颖, 谢小林, 等. 不同基因型柱花草的根系构型差异及其磷效率. 草业学报, 2013, 22(5): 265-271. [30] Zhang E H, Huang G B. Temporal and spatial distribution characteristics of the crop root in intercropping system. Chinese Journal of Applied Ecology, 2003, 14(8): 1301-1304. 张恩和, 黄高宝. 间套种植复合群体根系时空分布特征. 应用生态学报, 2003, 14(8): 1301-1304. [31] Gan Y W, Li L, Li L H, et al . Study of root distribution of walnut/wheat intercropping system in Southern Xinjiang. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(3): 102-110. 甘雅文, 李隆, 李鲁华, 等. 南疆核桃间作冬麦复合系统根系分布特征研究. 西北农业学报, 2015, 24(3): 102-110. [32] Yang X L, Zhang X M, Li Y L, et al . Analysis and estimation of root architecture in the hinterland of Taklimakan desert base on the fractal theory. Journal of Arid Land Resources and Environment, 2015, 29(8): 145-160. 杨小林, 张希明, 李义玲, 等. 基于分形理论的塔克拉玛干沙漠腹地自然植物根系构型特征分析. 干旱区资源与环境, 2015, 29(8): 145-160. [33] Zhou B, Yan X H, Xiao Y A, et al . Module biomass of Ageratum conyzoides populations in different habitats.Acta Ecologica Sinica, 2015, 35(8): 1-8. 周兵, 闫小红, 肖宜安, 等. 不同生境下入侵植物胜红蓟种群构件生物量分配特性研究. 生态学报, 2015, 35(8): 1-8. [34] Zhou Y S, Wang L Q. Ecological adaptation of root architecture to grassland degradation in Potentilla acaulis . Chinese Journal of Plant Ecology, 2011, 35(5): 490-499. 周艳松, 王立群. 星毛委陵菜根系构型对草原退化的生态适应. 植物生态学报, 2011, 35(5): 490-499. [35] Cop J, Korosec J. Composition and herbage yield of grass/while clover mixtures in relation to nitrogen fertilization under cutting//Mannetie L, Frame J. Grassland and Society Proceeding of the 15th General Meeting of the European Grassland Federation June 6-9. 1994: 77-80. [36] Zheng W, Zhu J Z, Jianaerguli. A comprehensive evaluation of the productive performance of legume-grass mixture under different mixed sowing patterns. Acta Prataculturae Sinica, 2012, 21(6): 242-251. 郑伟, 朱进忠, 加娜尔古丽. 不同混播方式豆禾混播草地生产性能的综合评价. 草业学报, 2012, 21(6): 242-251. [37] Zheng W, Zhu J Z, Jianaerguli, et al . Effects of different mixed sowing patterns on production performance of legume-grass mixture.Chinese Journal of Grassland, 2011, 33(5): 45-52. 郑伟, 朱进忠, 加娜尔古丽, 等. 不同混播方式对豆禾混播草地生产性能的影响. 中国草地学报, 2011, 33(5): 45-52. [38] Zhang Q Q, Jin G L, Zhu J Z, et al . Analyzing spatial patterns of prime plant population in mix-sowed artificial grassland with different established years. Acta Agrestia Sinica, 2011, 19(5): 735-739. 张强强, 靳瑰丽, 朱进忠, 等. 不同建植年限混播人工草地主要植物种群空间分布格局分析. 草地学报, 2011, 19(5): 735-739. [39] Wang J Y, Wang H Q, Liang X D, et al . Response of root morphology and N absorption to nitrate nitrogen supply in hydroponic oats. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 1049-1055. 王俊英, 王华青, 梁晓东, 等. 水培燕麦根系形态和氮吸收流量对硝态氮供应浓度的响应. 植物营养与肥料学报, 2016, 22(4): 1049-1055. [40] Vercambre G, Pagès L, Doussan C, et al . Architectural analysis and synthesis of the plum tree root system in an orchard using a quantitative modelling approach. Plantand Soil, 2003, 251: 1-11. [41] Oppelt A L, Kurth W, Jentschke G, et al . Contrasting rooting patterns of some arid-zone fruit tree species from Botswana-II. Coarse root distribution. Agroforestry Systems, 2005, 64: 1-11. [42] Yang P L, Luo Y P. Fractal characteristics of winter wheat roots. Chinese Science Bulletin, 1994, 39(20): 1911-1933. 杨培岭, 罗远培. 冬小麦根系形态的分形特征. 科学通报, 1994, 39(20): 1911-1933. [43] Yang F, Huang S, Gao R, et al . Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: far-red ratio. Field Crops Research, 2014, 155: 245-253. [44] Costa C, Dwyer L M, Hamilton R I. A sampling method for measurement of large root systems with scanner-based image analysis. Agronomy Journal, 2000, 92(4): 621-627. [45] Yang F, Lou Y, Liao D P, et al . Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system. Acta Agronomica Sinica, 2015, 41(4): 642-650. 杨峰, 娄莹, 廖敦平, 等. 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响. 作物学报, 2015, 41(4): 642-650. [46] Ljung K, Hull A K, Yamada M, et al . Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell, 2005, 17(4): 1090-1104. |