[1] Li Y, Sun H R, Ding N, et al. Alfalfa (Medicago sativa L.) root biomass. Acta Agrestia Sinica, 2011, (5): 872-879. 李扬, 孙洪仁, 丁宁, 等. 紫花苜蓿根系生物量. 草地学报, 2011, (5): 872-879. [2] Lu S.Effects of drought stress on plant growth and physiological traits. Journal of Jiangsu Forestry Science & Technology, 2012, (4): 51-54. 鲁松. 干旱胁迫对植物生长及其生理的影响. 江苏林业科技, 2012, (4): 51-54. [3] Zhou F.Effects of drought stress on plant growth and physiological traits. Beijing Agriculture, 2014, (3): 1. 周峰. 干旱胁迫对植物生长及其生理的影响. 北京农业, 2014, (3): 1. [4] Jo B, Radhika D, Hancock J T, et al. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant Journal, 2006, 45(1): 113-122. [5] Yang X L, Zhu Y J.Advances of plant drought stress. Agricultural Engineening, 2012, (11): 44-45. 杨雪莲, 朱友娟. 植物干旱胁迫研究进展. 农业工程, 2012, (11): 44-45. [6] Wang B F, Huang J P, Yang X L, et al. Advances on inhibition mechanism of crop photosynthesis by drought stress. Hubei Agricultural Sciences, 2014, (23): 5628-5632. 汪本福, 黄金鹏, 杨晓龙, 等. 干旱胁迫抑制作物光合作用机理研究进展. 湖北农业科学, 2014, (23): 5628-5632. [7] Yu D Q, Tang H R, Zhang Y, et al. Research progress in glucose-6-phosphate dehydrogenase in higher plants. Chinese Journal of Biotechnology, 2012, (7): 800-812. 于定群, 汤浩茹, 张勇, 等. 高等植物葡萄糖-6-磷酸脱氢酶的研究进展. 生物工程学报, 2012, (7): 800-812. [8] Kletzien R F, Harris P K W, Foellmi L A. Glucose-6-phosphate dehydrogenase, a “housekeeping” enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. The FASEB Journal, 1994, 8: 174-181. [9] Ghosh A K, Saini S, Das S, et al. Glucose-6-phosphate dehydrogenase and trypanothione reductase interaction protects Leishmania donovani from metalloid mediated oxidative stress. Free Radical Biology and Medicine, 2017, 106: 10-23. [10] Valderrama R, Corpas F J, Carreras A, et al. The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell & Environment, 2006, 29(7): 1449-1459. [11] Li J S.Studies on the Mechanism of Regulations of G6PDH, cGMP, H2O2 and Ca2+ in Plant Adaptation to Salt Tolerance. Lanzhou: Lanzhou University, 2011. 李积胜. G6PDH、cGMP、H2O2和Ca2+在植物耐盐适应中调节作用的机理研究. 兰州: 兰州大学, 2011. [12] Stanton R C.Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. Iubmb Life, 2012, 64(5): 362-369. [13] Wang H H, Yang L D, Li Y, et al. Involvement of ABA- and H2O2- dependent cytosolic glucose-6-phosphate dehydrogenase in maintaining redox homeostasis in soybean roots under drought stress. Plant Physiology Biochemistry, 2016, 107: 126-136. [14] Liu J, Wang X M, Hu Y F, et al. Glucose-6-phosphate dehydrogenase plays a pivotal role in tolerance to drought stress in soybean roots. Plant Cell Report, 2013, 32(3): 415-429. [15] Zhao C Z, Wang X M, Wang X Y, et al. Glucose-6-phosphate dehydrogenase and alternative oxidase are involved in the cross tolerance of highland barley to salt stress and UV-B radiation. Journal of Plant Physiology, 2015, 181: 83-95. [16] Cardi M, Castiglia D, Ferrara M, et al. The effects of salt stress cause a diversion of basal metabolism in barley roots: possible different roles for glucose-6-phosphate dehydrogenase isoforms. Plant Physiology Biochemistry, 2015, 86: 44-54. [17] Hofmann N R.The GSK3-type kinase ASKα targets glucose-6-phosphate dehydrogenase to mediate oxidative stress responses in Arabidopsis. Plant Cell, 2012, 24(8): 3170. [18] An X, Liu L Z, Hu P.Research in progress on glucose-6-phosphate dehydrogenase. Chinese Journal of Biologicals, 2011, (6): 745-748. 安选, 刘良忠, 胡鹏. 葡萄糖-6-磷酸脱氢酶的研究进展. 中国生物制品学杂志, 2011, (6): 745-748. [19] Asai S, Yoshioka M, Nomura H, et al. A plastidic glucose-6-phosphate dehydrogenase is responsible for hypersensitive response cell death and reactive oxygen species production. Journal of General Plant Pathology, 2011, 77(3): 152-162. [20] Hodges D M, Delong J M, Forney C F, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207: 604-711. [21] Heath R L, Packer L.Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 1968, 125: 189-198. [22] Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254. [23] Esposito S, Carfagna S, Massaro G, et al. Glucose-6-phosphate dehydrogenase in barley roots: kinetic properties and localization of the isoforms. Planta, 2001, 212: 627-634. [24] Liu Y G, Wu R R, Wan Q, et al. Glucose-6-phosphate dehydrogenase palys a pivotal role in nitric oxide-involved defense against oxidative stress under salt stress in red kidney bean roots. Plant and Cell Physioloy, 2007, 48(3): 511-522. [25] Nie S H, Qi J C, Zhang H L, et al. Effect of drought stress simulated by PEG6000 on malondialdehyde content and activities of protective enzymes in barley seedings. Xingjiang Agricultural Sciences, 2011, (1): 11-17. 聂石辉, 齐军仓, 张海禄, 等. PEG6000模拟干旱胁迫对大麦幼苗丙二醛含量及保护酶活性的影响. 新疆农业科学, 2011, (1): 11-17. [26] Wang H Z, Zhang L H, Jun M A, et al. Effects of water stress on reactive oxygen species generation and protection system in rice during grain-filling stage. Agricultural Sciences in China, 2010, 9(5): 633-641. [27] Gong H, Chen G, Li F, et al. Involvement of G6PDH in heat stress tolerance in the calli from Przewalskia tangutica and Nicotiana tabacum. Biologia Plantarum, 2012, 56(3): 422-430. [28] Dal Santo S, Stampfl H, Krasensky J, et al. Stress-induced GSK3 regulates the redox stress response by phosphorylating glucose-6-phosphate dehydrogenase in Arabidopsis. Plant Cell, 2012, 24(8): 3380-3392. |