[1] Zhang G S, Tian J Q, Jiang N, et al. Methanogen community in Zoige wetland of Tibetan plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC-I. Environmental Microbiology, 2008, 10(7): 1850-1860. [2] Li J C, Wang W L, Hu G Y, et al. Changes in ecosystem service values in Zoige Plateau, China. Agriculture, Ecosystems & Environment, 2010, 139(4): 766-770. [3] Smith S D, Charlet T N, Zitzer S F, et al. Long-term response of a Mojave Desert winter annual plant community to a whole-ecosystem atmospheric CO2 manipulation. Global Change Biology, 2014, 20(3): 879-892. [4] Richardson B A, Kitchen S G, Pendleton R L, et al. Adaptive responses reveal contemporary and future ecotypes in a desert shrub. Ecological Applications, 2014, 24(2): 413-427. [5] Auger J, Meyer S E, Jenkins S H.A mast-seeding desert shrub regulates population dynamics and behavior of its heteromyid dispersers. Ecology and Evolution, 2016, 6(8): 2275-2296. [6] Zhao Y N.Soil biological characteristics and soil fertility of shrub sand-fixing lands in the Yulin sand area. Yangling: Northwest A & F University, 2014. 赵燕娜. 榆林沙区灌木固沙林土壤生物学特性及土壤肥力研究. 杨凌: 西北农林科技大学, 2014. [7] Shu X Y, Hu Y F, He J, et al. Effect of Salix cupularis shrubs on soil nitrogen in the alpine sandy land of Northwest Sichuan. Acta Prataculturae Sinica, 2017, 26(7): 55-61. 舒向阳, 胡玉福, 何佳, 等. 川西北高寒沙地不同大小高山柳对土壤氮素的影响. 草业学报, 2017, 26(7): 55-61. [8] Badano E I, Samour-Nieva O R, Flores J, et al. Facilitation by nurse plants contributes to vegetation recovery in human-disturbed desert ecosystems. Journal of Plant Ecology, 2016, 9(5): 485-497. [9] Cheng B, Zhao Y J, Zhang W G, et al. The research advances and prospect of ecological stoichiometry. Acta Ecologica Sinica, 2010, 30(6): 1628-1637. 程滨, 赵永军, 张文广, 等. 生态化学计量学研究进展. 生态学报, 2010, 30(6): 1628-1637. [10] Reed S C, Yang X, Thornton P E.Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. New Phytologist, 2015, 208(2): 324-329. [11] Achat D L, Augusto L, Gallet-Budynek A, et al. Future challenges in coupled C-N-P cycle models for terrestrial ecosystems under global change: a review. Biogeochemistry, 2016, 131(1/2): 173-202. [12] Bagousse-Pinguet Y, Forey E, Touzard B, et al. Disentangling the effects of water and nutrients for studying the outcome of plant interactions in sand dune ecosystems. Journal of Vegetation Science, 2013, 24(2): 375-383. [13] Rodríguez-Echeverría S, Lozano Y M, Bardgett R D.Influence of soil microbiota in nurse plant systems. Functional Ecology, 2016, 30(1): 30-40. [14] Putten W H, Bardgett R D, Bever J D, et al. Plant-soil feedbacks: the past, the present and future challenges. Journal of Ecology, 2013, 101(2): 265-276. [15] Kardol P, Veen G F, Teste F P, et al. Peeking into the black box: a trait-based approach to predicting plant-soil feedback. New Phytologist, 2015, 206(1): 1-4. [16] Titus J H, Nowak R S, Smith S D.Soil resource heterogeneity in the Mojave Desert. Journal of Arid Environments, 2002, 52(3): 269-292. [17] Cai H X, Wu F Z, Yang W Q, et al. Effects of drought stress on the photosynthesis of Salix paraqplesia and Hippophae rhamnoides seedlings. Acta Ecologica Sinica, 2011, 31(9): 2430-2436. 蔡海霞, 吴福忠, 杨万勤, 等. 干旱胁迫对高山柳和沙棘幼苗光合生理特征的影响. 生态学报, 2011, 31(9): 2430-2436. [18] Yang J H, Wang C L, Dai H L.Soil chemical analysis and environmental monitoring. Beijing: China Earth Press, 2008: 18-79. 杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测. 北京: 中国大地出版社, 2008: 18-79. [19] Zhang K, Su Y Z, Wang T, et al. Soil properties and herbaceous characteristics in an age sequence of Haloxylon ammodendron plantations in an oasis-desert ecotone of northwestern China. Journal of Arid Land, 2016, 8(6): 960-972. [20] Fan B L, Zhang A P, Yang Y, et al. Long-term effects of xerophytic shrub Haloxylon ammodendron plantations on soil properties and vegetation dynamics in Northwest China. PloS One, 2016, 11(12): e0168000. [21] Sardans J, Peñuelas J.The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiology, 2012, 160(4): 1741-1761. [22] Li X J, Li X R, Wang X P, et al. Changes in soil organic carbon fractions after afforestation with xerophytic shrubs in the Tengger Desert, northern China. European Journal of Soil Science, 2016, 67(2): 184-195. [23] Deng Q, McMahon D E, Xiang Y Z, et al. A global meta-analysis of soil phosphorus dynamics after afforestation. New Phytologist, 2017, 213(1): 181-192. [24] Fan H B, Wu J P, Liu W F, et al. Linkages of plant and soil C/N/P stoichiometry and their relationships to forest growth in subtropical plantations. Plant and Soil, 2015, 392(1/2): 127-138. [25] Yu Y F, Peng W X, Song T Q, et al. Stoichiometric characteristics of plant and soil C, N and P in different forest types in depressions between Karst hills, southwest China. Chinese Journal of Applied Ecology, 2014, 25(4): 947-954. 俞月凤, 彭晚霞, 宋同清, 等. 喀斯特峰丛洼地不同森林类型植物和土壤 C, N, P 化学计量特征. 应用生态学报, 2014, 25(4): 947-954. [26] Sinsabaugh R L, Hill B H, Shah J J F. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462: 795-798. [27] Zhao F Z, Kang D, Han X H, et al.Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity. Ecological Engineering, 2015, 74: 415-422. [28] Tian H Q, Chen G S, Zhang C, et al.Pattern and variation of C/N/P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 2010, 98(1/3): 139-151. [29] Deng L, Shangguan Z P.Afforestation drives soil carbon and nitrogen changes in China. Land Degradation & Development, 2017, 28(1): 151-165. |