草业学报 ›› 2021, Vol. 30 ›› Issue (12): 103-116.DOI: 10.11686/cyxb2020466
• 研究论文 • 上一篇
陈斌1(), 刘筱玮1, 贾琳2, 李子葳1, 杨宇佳1, 岳莉然1, 何淼1()
收稿日期:
2020-10-19
修回日期:
2020-11-23
出版日期:
2021-11-11
发布日期:
2021-11-11
通讯作者:
何淼
作者简介:
Corresponding author. E-mail: hm2017148@126.com基金资助:
Bin CHEN1(), Xiao-wei LIU1, Lin JIA2, Zi-wei LI1, Yu-jia YANG1, Li-ran YUE1, Miao HE1()
Received:
2020-10-19
Revised:
2020-11-23
Online:
2021-11-11
Published:
2021-11-11
Contact:
Miao HE
摘要:
为探究不同光强下鸭跖草科植物茎秆性状和力学特征的变化规律,以紫鸭跖草、花叶水竹草、吊竹梅和绿叶水竹草的茎段扦插苗为试验材料,通过遮光网设置5种光强梯度(分别为自然光强的100%、75%、50%、25%、5%)进行试验,研究不同光强对4种植物茎秆形态性状、解剖结构和力学特征的影响。结果表明:随光强的降低,4种植物节间长显著增加(P<0.05),比茎重显著降低(P<0.05),除紫鸭跖草的茎生物量无显著变化外,其他3种植物的茎生物量均呈先增加后降低趋势;不同的光强对4种植物的表皮厚度、皮层厚度、维管束直径、髓直径以及茎粗产生了不同的影响,但各组织结构与茎粗的比值保持相对稳定,同时光强降低使4种植物的髓细胞长和皮层细胞长显著增加(P<0.05),髓细胞宽和皮层细胞宽显著降低(P<0.05);4种植物的弯折性能和抗压强度以及紫鸭跖草、吊竹梅和绿叶水竹草的组织结构强度随光强的降低而显著降低(P<0.05)。Pearson相关性分析结果表明,比茎重、表皮厚度、皮层厚度、维管束直径、髓直径、茎粗、皮层细胞宽、髓细胞宽与弯折性能呈极显著正相关(P<0.01),髓细胞宽与组织结构强度呈极显著正相关(P<0.01),比茎重、表皮厚度、髓直径、髓细胞宽与抗压强度呈极显著正相关 (P<0.01)。综合上述结果,4种植物可以通过增加茎生物量的分配、节间长的方式在弱光环境中获取有限的光资源,但茎生物量的增加存在明显的阈值,且与节间长的增加呈失衡状态,导致比茎重的降低以及茎秆各解剖结构发生改变,造成4种植物的弯折性能、组织结构强度和抗压强度降低,隶属函数分析表明不同光强下花叶水竹草和吊竹梅的茎秆特性较优,其次为绿叶水竹草,最差的为紫鸭跖草。
陈斌, 刘筱玮, 贾琳, 李子葳, 杨宇佳, 岳莉然, 何淼. 不同光强对4种鸭跖草科植物茎秆性状和力学特征的影响[J]. 草业学报, 2021, 30(12): 103-116.
Bin CHEN, Xiao-wei LIU, Lin JIA, Zi-wei LI, Yu-jia YANG, Li-ran YUE, Miao HE. Effects of different light intensities on stem characters and mechanical traits of four Commelinaceae plants[J]. Acta Prataculturae Sinica, 2021, 30(12): 103-116.
图1 不同光强对节间长的影响不同小写字母表示同一物种不同处理间差异显著(P<0.05)。下同。The different letters mean the significant differences among treatments of the same species (P<0.05). The same below.
Fig.1 Effect of different light intensities on plant internode length
图3 不同光强下茎横切解剖结构Ep:表皮 Epidermis;Co:皮层 Cortex;Vc:维管束 Vascular bundle;Pi:髓 Pith. 下同 The same below.
Fig. 3 Stem transect anatomical structure under different light intensities
指标 Index | 弯折性能 Bending properties | 组织结构强度 Intensity of organizational structure | 抗压强度 Compressive strength |
---|---|---|---|
节间长 Internode length | -0.173 | -0.451* | -0.482* |
茎生物量 Stem biomass | 0.108 | -0.262 | 0.394 |
比茎重Specific stem weight | 0.902** | 0.350 | 0.680** |
表皮厚度 Epidermises thickness | 0.782** | 0.073 | 0.720** |
皮层厚度 Cortex thickness | 0.809** | 0.358 | 0.422 |
维管束直径 Vascular bundle diameter | 0.850** | 0.452* | 0.561* |
髓直径 Pith diameter | 0.899** | 0.389 | 0.603** |
茎粗 Stem diameter | 0.881** | 0.376 | 0.546* |
表皮茎粗比 Epidermise and stem thickness ratio | 0.228 | -0.315 | 0.477* |
皮层茎粗比 Cortical and stem thickness ratio | 0.670** | 0.274 | 0.302 |
髓茎粗比 Myeloid and stem thickness ratio | -0.754** | -0.253 | -0.405 |
维管束茎粗比Vascular and stem thickness ratio | -0.754** | -0.154 | -0.492* |
皮层细胞长 Cortical cell length | 0.324 | 0.065 | 0.021 |
皮层细胞宽 Cortical cell width | 0.866** | 0.327 | 0.557* |
髓细胞长 Pith cell length | 0.040 | 0.026 | -0.275 |
髓细胞宽 Pith cell width | 0.766** | 0.593** | 0.756** |
皮层细胞长宽比Cortical cell length and width ratio | -0.416 | -0.258 | -0.451* |
髓细胞长宽比Pith cell length and width ratio | -0.288 | -0.244 | -0.576** |
表1 茎秆性状指标与力学特征指标的相关性系数
Table 1 The correlation coefficient between stem characteristics indexes and mechanical properties indexes
指标 Index | 弯折性能 Bending properties | 组织结构强度 Intensity of organizational structure | 抗压强度 Compressive strength |
---|---|---|---|
节间长 Internode length | -0.173 | -0.451* | -0.482* |
茎生物量 Stem biomass | 0.108 | -0.262 | 0.394 |
比茎重Specific stem weight | 0.902** | 0.350 | 0.680** |
表皮厚度 Epidermises thickness | 0.782** | 0.073 | 0.720** |
皮层厚度 Cortex thickness | 0.809** | 0.358 | 0.422 |
维管束直径 Vascular bundle diameter | 0.850** | 0.452* | 0.561* |
髓直径 Pith diameter | 0.899** | 0.389 | 0.603** |
茎粗 Stem diameter | 0.881** | 0.376 | 0.546* |
表皮茎粗比 Epidermise and stem thickness ratio | 0.228 | -0.315 | 0.477* |
皮层茎粗比 Cortical and stem thickness ratio | 0.670** | 0.274 | 0.302 |
髓茎粗比 Myeloid and stem thickness ratio | -0.754** | -0.253 | -0.405 |
维管束茎粗比Vascular and stem thickness ratio | -0.754** | -0.154 | -0.492* |
皮层细胞长 Cortical cell length | 0.324 | 0.065 | 0.021 |
皮层细胞宽 Cortical cell width | 0.866** | 0.327 | 0.557* |
髓细胞长 Pith cell length | 0.040 | 0.026 | -0.275 |
髓细胞宽 Pith cell width | 0.766** | 0.593** | 0.756** |
皮层细胞长宽比Cortical cell length and width ratio | -0.416 | -0.258 | -0.451* |
髓细胞长宽比Pith cell length and width ratio | -0.288 | -0.244 | -0.576** |
指标Index | 第1主成分PC1 | 第2主成分PC2 | 第3主成分PC3 | 第4主成分PC4 |
---|---|---|---|---|
节间长 Internode length | 0.157 | 0.729 | 0.589 | -0.191 |
茎生物量 Stem biomass | -0.073 | -0.785 | 0.446 | 0.141 |
比茎重 Specific stem weight | 0.949 | -0.144 | 0.090 | -0.033 |
表皮厚度 Epidermise thickness | 0.854 | -0.247 | 0.387 | 0.173 |
皮层厚度 Cortex thickness | 0.948 | 0.135 | 0.040 | -0.248 |
维管束直径 Vascular bundle diameter | 0.908 | 0.044 | -0.239 | 0.025 |
髓直径 Pith diameter | 0.981 | 0.080 | -0.082 | 0.066 |
茎粗 Stem diameter | 0.988 | 0.094 | -0.016 | -0.059 |
表皮茎粗比 Epidermise and stem thickness ratio | 0.181 | -0.537 | 0.663 | 0.365 |
皮层茎粗比 Cortical and stem thickness ratio | 0.857 | 0.088 | 0.162 | -0.417 |
髓茎粗比 Myeloid and stem thickness ratio | -0.919 | -0.065 | -0.206 | 0.293 |
维管束茎粗比Vascular bundle and stem thickness ratio | -0.907 | -0.143 | -0.272 | -0.071 |
皮层细胞长 Cortical cell length | 0.529 | 0.743 | 0.004 | 0.361 |
皮层细胞宽 Cortical cell width | 0.974 | 0.086 | 0.021 | -0.009 |
髓细胞长 Pith cell length | 0.271 | 0.883 | -0.138 | 0.183 |
髓细胞宽 Pith cell width | 0.699 | -0.199 | -0.492 | 0.339 |
皮层细胞长宽比Cortical cell length and width ratio | -0.240 | 0.788 | 0.026 | 0.447 |
髓细胞长宽比Pith cell length and width ratio | -0.022 | 0.974 | 0.085 | 0.089 |
弯折性能 Bending properties | 0.635 | -0.602 | -0.131 | 0.399 |
组织结构强度 Intensity of organizational structure | 0.395 | -0.164 | -0.771 | -0.142 |
抗压强度 Compressive strength | 0.913 | -0.274 | -0.154 | 0.078 |
特征值 Eigenvalue | 10.995 | 4.998 | 2.256 | 1.228 |
方差贡献率Variance contribution rate (%) | 52.359 | 23.801 | 10.745 | 5.846 |
累计贡献率Cumulative contribution (%) | 52.359 | 76.160 | 86.904 | 92.750 |
表2 茎秆性状指标与力学特征指标主成分分析的初始因子载荷矩阵
Table 2 Initial factor loading matrix based on principal component analysis of stem characteristics and mechanical properties indexes
指标Index | 第1主成分PC1 | 第2主成分PC2 | 第3主成分PC3 | 第4主成分PC4 |
---|---|---|---|---|
节间长 Internode length | 0.157 | 0.729 | 0.589 | -0.191 |
茎生物量 Stem biomass | -0.073 | -0.785 | 0.446 | 0.141 |
比茎重 Specific stem weight | 0.949 | -0.144 | 0.090 | -0.033 |
表皮厚度 Epidermise thickness | 0.854 | -0.247 | 0.387 | 0.173 |
皮层厚度 Cortex thickness | 0.948 | 0.135 | 0.040 | -0.248 |
维管束直径 Vascular bundle diameter | 0.908 | 0.044 | -0.239 | 0.025 |
髓直径 Pith diameter | 0.981 | 0.080 | -0.082 | 0.066 |
茎粗 Stem diameter | 0.988 | 0.094 | -0.016 | -0.059 |
表皮茎粗比 Epidermise and stem thickness ratio | 0.181 | -0.537 | 0.663 | 0.365 |
皮层茎粗比 Cortical and stem thickness ratio | 0.857 | 0.088 | 0.162 | -0.417 |
髓茎粗比 Myeloid and stem thickness ratio | -0.919 | -0.065 | -0.206 | 0.293 |
维管束茎粗比Vascular bundle and stem thickness ratio | -0.907 | -0.143 | -0.272 | -0.071 |
皮层细胞长 Cortical cell length | 0.529 | 0.743 | 0.004 | 0.361 |
皮层细胞宽 Cortical cell width | 0.974 | 0.086 | 0.021 | -0.009 |
髓细胞长 Pith cell length | 0.271 | 0.883 | -0.138 | 0.183 |
髓细胞宽 Pith cell width | 0.699 | -0.199 | -0.492 | 0.339 |
皮层细胞长宽比Cortical cell length and width ratio | -0.240 | 0.788 | 0.026 | 0.447 |
髓细胞长宽比Pith cell length and width ratio | -0.022 | 0.974 | 0.085 | 0.089 |
弯折性能 Bending properties | 0.635 | -0.602 | -0.131 | 0.399 |
组织结构强度 Intensity of organizational structure | 0.395 | -0.164 | -0.771 | -0.142 |
抗压强度 Compressive strength | 0.913 | -0.274 | -0.154 | 0.078 |
特征值 Eigenvalue | 10.995 | 4.998 | 2.256 | 1.228 |
方差贡献率Variance contribution rate (%) | 52.359 | 23.801 | 10.745 | 5.846 |
累计贡献率Cumulative contribution (%) | 52.359 | 76.160 | 86.904 | 92.750 |
指标 Index | 紫鸭跖草 C. purpurea | 花叶水竹草 T. fluminensis ‘Variegata’ | 吊竹梅 T. zebrina | 绿叶水竹草 T. fluminensis ‘Vairidia’ |
---|---|---|---|---|
节间长 Internode length | 0.54 | 0.53 | 0.50 | 0.46 |
茎生物量 Stem biomass | 0.44 | 0.50 | 0.47 | 0.52 |
比茎重 Specific stem weight | 0.69 | 0.56 | 0.58 | 0.54 |
表皮厚度 Epidermise thickness | 0.60 | 0.57 | 0.57 | 0.39 |
皮层厚度 Cortex thickness | 0.43 | 0.52 | 0.49 | 0.56 |
维管束直径 Vascular bundle diameter | 0.51 | 0.40 | 0.49 | 0.34 |
髓直径 Pith diameter | 0.50 | 0.39 | 0.51 | 0.57 |
茎粗 Stem diameter | 0.47 | 0.42 | 0.54 | 0.40 |
表皮茎粗比 Epidermise and stem thickness ratio | 0.49 | 0.54 | 0.50 | 0.49 |
皮层茎粗比 Cortical and stem thickness ratio | 0.40 | 0.65 | 0.53 | 0.57 |
髓茎粗比 Myeloid and stem thickness ratio | 0.44 | 0.67 | 0.46 | 0.63 |
维管束茎粗比Vascular bundle and stem thickness ratio | 0.52 | 0.41 | 0.44 | 0.49 |
皮层细胞长 Cortical cell length | 0.54 | 0.55 | 0.55 | 0.70 |
皮层细胞宽 Cortical cell width | 0.62 | 0.44 | 0.66 | 0.55 |
髓细胞长 Pith cell length | 0.40 | 0.47 | 0.53 | 0.58 |
髓细胞宽 Pith cell width | 0.44 | 0.59 | 0.48 | 0.52 |
皮层细胞长宽比Cortical cell length and width ratio | 0.41 | 0.54 | 0.63 | 0.66 |
髓细胞长宽比Pith cell length and width ratio | 0.42 | 0.58 | 0.55 | 0.58 |
弯折性能 Bending properties | 0.51 | 0.55 | 0.71 | 0.38 |
组织结构强度 Intensity of organizational structure | 0.52 | 0.59 | 0.41 | 0.31 |
抗压强度 Compressive strength | 0.59 | 0.74 | 0.50 | 0.49 |
平均值 Mean | 0.50 | 0.53 | 0.53 | 0.51 |
表3 不同光强下4种植物各测定指标的隶属函数值
Table 3 Subordinate function value of observed indicators of four plants under different light intensities
指标 Index | 紫鸭跖草 C. purpurea | 花叶水竹草 T. fluminensis ‘Variegata’ | 吊竹梅 T. zebrina | 绿叶水竹草 T. fluminensis ‘Vairidia’ |
---|---|---|---|---|
节间长 Internode length | 0.54 | 0.53 | 0.50 | 0.46 |
茎生物量 Stem biomass | 0.44 | 0.50 | 0.47 | 0.52 |
比茎重 Specific stem weight | 0.69 | 0.56 | 0.58 | 0.54 |
表皮厚度 Epidermise thickness | 0.60 | 0.57 | 0.57 | 0.39 |
皮层厚度 Cortex thickness | 0.43 | 0.52 | 0.49 | 0.56 |
维管束直径 Vascular bundle diameter | 0.51 | 0.40 | 0.49 | 0.34 |
髓直径 Pith diameter | 0.50 | 0.39 | 0.51 | 0.57 |
茎粗 Stem diameter | 0.47 | 0.42 | 0.54 | 0.40 |
表皮茎粗比 Epidermise and stem thickness ratio | 0.49 | 0.54 | 0.50 | 0.49 |
皮层茎粗比 Cortical and stem thickness ratio | 0.40 | 0.65 | 0.53 | 0.57 |
髓茎粗比 Myeloid and stem thickness ratio | 0.44 | 0.67 | 0.46 | 0.63 |
维管束茎粗比Vascular bundle and stem thickness ratio | 0.52 | 0.41 | 0.44 | 0.49 |
皮层细胞长 Cortical cell length | 0.54 | 0.55 | 0.55 | 0.70 |
皮层细胞宽 Cortical cell width | 0.62 | 0.44 | 0.66 | 0.55 |
髓细胞长 Pith cell length | 0.40 | 0.47 | 0.53 | 0.58 |
髓细胞宽 Pith cell width | 0.44 | 0.59 | 0.48 | 0.52 |
皮层细胞长宽比Cortical cell length and width ratio | 0.41 | 0.54 | 0.63 | 0.66 |
髓细胞长宽比Pith cell length and width ratio | 0.42 | 0.58 | 0.55 | 0.58 |
弯折性能 Bending properties | 0.51 | 0.55 | 0.71 | 0.38 |
组织结构强度 Intensity of organizational structure | 0.52 | 0.59 | 0.41 | 0.31 |
抗压强度 Compressive strength | 0.59 | 0.74 | 0.50 | 0.49 |
平均值 Mean | 0.50 | 0.53 | 0.53 | 0.51 |
1 | Li D L, Wang H, Jiang H, et al. Effects of shading on photosynthetic characteristics and leaf anatomical structure of Emmenopterys henryi seedlings. Acta Ecologica Sinica, 2019, 39(24): 9089-9100. |
李冬林, 王火, 江浩, 等. 遮光对香果树幼苗光合特性及叶片解剖结构的影响. 生态学报, 2019, 39(24): 9089-9100. | |
2 | Pierik R, Whitelam G C, Voesenek L A C J, et al. Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant-plant signalling. The Plant Journal, 2004, 38(2): 310-319. |
3 | Franklin K A, Whitelam G C. Phytochromes and shade-avoidance responses in plants. Annals of Botany, 2005, 96(2): 169-175. |
4 | Qin F F, Li Z H, Liu X B, et al. Effects of exogenous 2, 4-epibrassinolide on the growth and photosynthesis of alfalfa under high temperature and low light stress in summer. Acta Prataculturae Sinica, 2020, 29(9): 146-160. |
覃凤飞, 李志华, 刘信宝, 等. 外源2,4表油菜素内酯对越夏期高温与弱光胁迫下紫花苜蓿生长和光合性能的影响. 草业学报, 2020, 29(9): 146-160. | |
5 | Tang X L, Jiang J, Jin H P, et al. Effects of shading on chlorophyll content and photosynthetic characteristics in leaves of Phoebe bournei. Chinese Journal of Applied Ecology, 2019, 30(9): 2941-2948. |
唐星林, 姜姜, 金洪平, 等. 遮阴对闽楠叶绿素含量和光合特性的影响. 应用生态学报, 2019, 30(9): 2941-2948. | |
6 | Deng X X, Shi Z, Xiao W F, et al. Effects of drought and shading on growth and photosynthetic characteristics of Pinus massoniana seedling. Acta Ecologica Sinica, 2020, 40(8): 2735-2742. |
邓秀秀, 施征, 肖文发, 等. 干旱和遮荫对马尾松幼苗生长和光合特性的影响. 生态学报, 2020, 40(8): 2735-2742. | |
7 | Shang S J, Wang Y Q, Wang N, et al. Effects of light intensity on physiological and growth characteristics of Paeonia suffruticosa var. papaveracea. Chinese Journal of Ecology, 2020, 39(9): 2963-2973. |
尚三娟, 王义婧, 王楠, 等. 光照强度对紫斑牡丹生理及生长特性的影响.生态学杂志, 2020, 39(9): 2963-2973. | |
8 | Wang M L, Wei X, Tang H, et al. Effects of light intensity on growth and photosynthesis of three karst plant seedlings. Chinese Journal of Ecology, 2015, 34(3): 604-610. |
王满莲, 韦霄, 唐辉, 等. 光强对三种喀斯特植物幼苗生长和光合特性的影响. 生态学杂志, 2015, 34(3): 604-610. | |
9 | Kamran M, Cui W, Ahmad I, et al. Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize. Plant Growth Regulation, 2018, 84(2): 317-332. |
10 | Liang G L, Zhang Y C, Jia Z F, et al. A study of the relationship between phenotypic traits, stem mechanical traits and lodging resistance of oat varieties for alpine regions. Acta Prataculturae Sinica, 2019, 28(4): 58-69. |
梁国玲, 张永超, 贾志锋, 等. 高寒区不同燕麦品种(系)表型性状和茎秆力学特征与抗倒伏性的关系研究. 草业学报, 2019, 28(4): 58-69. | |
11 | Zhang W, Wu L, Wu X, et al. Lodging resistance of japonica rice (Oryza sativa L.): Morphological and anatomical traits due to top-dressing nitrogen application rates. Rice, 2016, 9(1): 31. |
12 | Yu X B, Liang J Q, He Z M, et al. Response of stem characteristics and yield to sowing rate in soybean. Acta Prataculturae Sinica, 2020, 29(9): 117-124. |
于晓波, 梁建秋, 何泽民, 等. 撒播量对大豆茎秆特性和产量的影响. 草业学报, 2020, 29(9): 117-124. | |
13 | Xu S D, Lin X Z, Jiang T. Shading with growth, physiological indexes, biochemical indexes of three ground-cover plants.Journal of Zhejiang Forestry College, 2010, 27(1): 69-75. |
徐召丹, 林夏珍, 蒋挺. 遮光对3种地被植物生长和生理生化的影响. 浙江林学院学报, 2010, 27(1): 69-75. | |
14 | Liu C. Some thoughts on my country’s urban planning under wind damage. Journal of Chifeng University (Natural Science Edition), 2011, 27(1): 19-20. |
刘畅. 风害下我国城市规划的一些思考. 赤峰学院学报(自然科学版), 2011, 27(1): 19-20. | |
15 | Deng L, Wen M, Guo W, et al. Effects of drought stress and rehydration on physiology and biochemistry of leaf color in four species of Commelinaceae. Chinese Journal of Ecology, 2020, 39(2): 478-486. |
邓磊, 温敏, 郭微, 等. 干旱胁迫及复水对4种鸭跖草科植物叶色生理生化的影响. 生态学杂志, 2020, 39(2): 478-486. | |
16 | Li C, Luo Q, Weng S F. Commonly used species of commelinaceae and their landscape application in Guangzhou city parks. Chinese Journal of Tropical Agriculture, 2016, 36(3): 87-91. |
李灿, 罗倩, 翁殊斐. 广州城市公园常用鸭跖草科植物及其园林配置应用. 热带农业科学, 2016, 36(3): 87-91. | |
17 | Pellegrini M. Morphological phylogeny of Tradescantia L.(Commelinaceae) sheds light on a new infrageneric classification for the genus and novelties on the systematics of subtribe Tradescantiinae.PhytoKeys, 2017, 15(89): 11. |
18 | Chen B, Li H Y, Liu X W, et al. Effects of different light intensities on morphogenesis and ultrastructure of Gibasis geniculate leaf. Acta Prataculturae Sinica, 2019, 28(7): 175-185. |
陈斌, 李洪瑶, 刘筱玮, 等. 不同光照强度对新娘草叶片形态建成及超微结构的影响. 草业学报, 2019, 28(7): 175-185. | |
19 | Do Nascimento R A, Candido L S, Pereira J G, et al. Evaluation of vehicular pollution using the TRAD-MCN mutagenic bioassay with Tradescantia pallida (Commelinaceae). Environmental Pollution, 2018, 240: 440-447. |
20 | Wang M M, Zhou X R, Liang G L, et al. A multi-trait evaluation of salt tolerance of 5 oat germplasm lines at the seedling stage. Acta Prataculturae Sinica, 2020, 29(8): 143-154. |
王苗苗, 周向睿, 梁国玲, 等. 5份燕麦材料苗期耐盐性综合评价. 草业学报, 2020, 29(8): 143-154. | |
21 | Feng C H, Tian K, Wang Z B, et al. Responses of stem anatomical structure of a lakeside dominant plant Hippuris vulgaris to simulated warming in Napahai wetland. Chinese Journal of Ecology, 2019, 38(6): 1620-1628. |
冯春慧, 田昆, 王志保, 等. 纳帕海湖滨带优势植物杉叶藻(Hippuris vulgaris)茎解剖结构对模拟增温的响应. 生态学杂志, 2019, 38(6): 1620-1628. | |
22 | Wang Y X, Jia X M, Shi X Y, et al. The response characteristics of the ultrastructure and anatomical structure of three apple rootstocks under drought stress. Plant Physiology Journal, 2018, 54(4): 594-606. |
王延秀, 贾旭梅, 石晓昀, 等. 三种苹果砧木应对干旱胁迫的超微及解剖结构响应特性. 植物生理学报, 2018, 54(4): 594-606. | |
23 | Dutilleul P, Han L, Valladares F, et al. Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: A biophysical demonstration using computed tomography scanning data. Frontiers in Plant Science, 2015, 6: 172. |
24 | Liu S L, Luo Y M, Yang R J, et al. High resource-capture and -use efficiency, and effective antioxidant protection contribute to the invasiveness of Alnus formosana plants. Plant Physiology and Biochemistry, 2015, 96: 436-447. |
25 | Liu Q Q, Ma X Q, Li Y J, et al. Response of seed germination and seedling growth of Chinese fir to different light intensities. Chinese Journal of Applied Ecology, 2016, 27(12): 3845-3852. |
刘青青, 马祥庆, 李艳娟, 等. 杉木种子萌发及幼苗生长对光强的响应. 应用生态学报, 2016, 27(12): 3845-3852. | |
26 | Zhou X H, Gui S S, Li Y Q, et al. Shading effects on growth and photosynthetic characteristics of Camellia oleifera seedling. Journal of Central South University of Forestry & Technology, 2016, 36(9): 23-28. |
周新华, 桂尚上, 厉月桥, 等. 遮光对油茶苗期生长及光合特性的影响. 中南林业科技大学学报, 2016, 36(9): 23-28. | |
27 | Fan X, Cai J, Liu J P, et al. Effect of partial shading on the morphological plasticity and biomass allocation of Potentilla anserina. Acta Prataculturae Sinica, 2016, 25(3): 172-180. |
樊星, 蔡捡, 刘金平, 等. 局部遮光对鹅绒委陵菜基株形态塑性及生物量配置的影响. 草业学报, 2016, 25(3): 172-180. | |
28 | Li Z L, Guo K X, Zhou S B, et al. Effects of light intensity on biological characteristics, physiological indexes and flavone content of Kalimeris indica. Acta Prataculturae Sinica, 2014, 23(4): 162-170. |
李中林, 郭开秀, 周守标, 等. 光强对马兰形态、生理及黄酮类化合物含量的影响. 草业学报, 2014, 23(4): 162-170. | |
29 | Li J Y, Zhai H B. Hydraulic architecture and drought resistance of woody plants. Chinese Journal of Applied Ecology, 2000, 11(2): 301-305. |
李吉跃, 翟洪波. 木本植物水力结构与抗旱性. 应用生态学报, 2000, 11(2): 301-305. | |
30 | Chen X H, Xu Y, Liu H, et al. Root/stem anatomical characteristics of four malus plants in western Sichuan plateau and their drought adaptation strategy. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(7): 1296-1302. |
陈小红, 徐扬, 刘韩, 等. 川西高原4种高山海棠的根茎解剖结构特征及其抗旱响应策略分析. 西北植物学报, 2017, 37(7): 1296-1302. | |
31 | Lin S Y, Sun M. Anatomical structure of salt-tolerant crossostephium chinensis and six species of chrysanthemum. Journal of Northeast Forestry University, 2017, 45(5): 62-69, 100. |
林双冀, 孙明. 耐盐种质芙蓉菊与6种菊属植物的营养器官解剖结构特征. 东北林业大学学报, 2017, 45(5): 62-69, 100. | |
32 | Liu T. The effects of shading on carbohydrates in soybean stalk and the relationship of carbohydrates with stem strength. Chengdu: Sichuan Agricultural University, 2018. |
刘婷. 荫蔽对大豆茎秆碳水化合物的影响及其与茎秆强度的关系. 成都: 四川农业大学, 2018. | |
33 | Liu W G, Jiang T, She Y H, et al. Preliminary study on physiological response mechanism of soybean (Glycine max) stem to shade stress at seedling stage. Chinese Journal of Oil Crop Sciences, 2011, 33(2): 141-146. |
刘卫国, 蒋涛, 佘跃辉, 等. 大豆苗期茎秆对荫蔽胁迫响应的生理机制初探. 中国油料作物学报, 2011, 33(2): 141-146. | |
34 | Zhang J, Zou W, Li Y, et al. Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice. Plant Science, 2015, 239: 84-91. |
35 | Xia X, Tang Y H, Tao J. Formation and regulation of ornamental plant stem strength. Plant Physiology Journal, 2018, 54(3): 347-354. |
夏星, 汤寓涵, 陶俊. 观赏植物茎秆强度形成及其调控. 植物生理学报, 2018, 54(3): 347-354. | |
36 | Li C Z, Sun Y, Zhao D Q, et al. Relationship between inflorescence stem mechanical strength and some elements contents of herbaceous peony (Paeonia lactiflora Pall.). Southwest China Journal of Agricultural Sciences, 2016, 29(5): 1214-1218. |
李成忠, 孙燕, 赵大球, 等. 芍药花茎矿质元素含量与机械强度的关系. 西南农业学报, 2016, 29(5): 1214-1218. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||