草业学报 ›› 2022, Vol. 31 ›› Issue (12): 133-145.DOI: 10.11686/cyxb2021491
• 研究论文 • 上一篇
刘涛1(), 刘玉萍2,3(), 富贵1, 吕婷1, 刘峰2, 张雨2, 苏丹丹2, 王亚男2, 郑长远2, 苏旭2,3,4()
收稿日期:
2021-12-28
修回日期:
2022-03-09
出版日期:
2022-12-20
发布日期:
2022-10-17
通讯作者:
刘玉萍,苏旭
作者简介:
E-mail: xusu8527972@126.com基金资助:
Tao LIU1(), Yu-ping LIU2,3(), Gui FU1, Ting LV1, Feng LIU2, Yu ZHANG2, Dan-dan SU2, Ya-nan WANG2, Chang-yuan ZHENG2, Xu SU2,3,4()
Received:
2021-12-28
Revised:
2022-03-09
Online:
2022-12-20
Published:
2022-10-17
Contact:
Yu-ping LIU,Xu SU
摘要:
禾本科沙鞭属仅包含沙鞭一个种。沙鞭具有根茎繁殖、克隆整合等典型沙生植物特征,是我国内蒙古高原非固定沙地的建群种。本研究采用流式细胞术和K-mer分析方法测定沙鞭基因组大小,建立和优化以芨芨草为内参物种、青海固沙草和方穗山羊草为外参物种的二倍体植物DNA含量(DNA C值)测定体系。研究结果表明:1)沙鞭流式细胞峰值荧光是青海固沙草的2.54倍,是芨芨草的1.35倍,峰值信号远小于方穗山羊草,推测沙鞭基因组大小约为1580.10±5.02 Mb;2)K-mer分析结果表明,沙鞭基因组大小为1563.54 Mb,杂合率1.15%,重复序列比例为66.27%,基因组GC含量为43.4%,属于高杂合、高重复的复杂基因组;3)沙鞭基因组可使用PacBio平台CLR或HiFi模式进行三代测序,测序深度应不低于20×。沙鞭基因组大小的准确测定不仅补充了禾本科针茅族植物的DNA含量数据,同时也为沙鞭基因组测序、进化基因组研究、种质资源开发和利用以及遗传资源保护提供了数据参考,可为针茅族近缘物种基因组大小测定提供借鉴。
刘涛, 刘玉萍, 富贵, 吕婷, 刘峰, 张雨, 苏丹丹, 王亚男, 郑长远, 苏旭. 基于流式细胞法和K-mer分析法检测沙鞭基因组大小[J]. 草业学报, 2022, 31(12): 133-145.
Tao LIU, Yu-ping LIU, Gui FU, Ting LV, Feng LIU, Yu ZHANG, Dan-dan SU, Ya-nan WANG, Chang-yuan ZHENG, Xu SU. Estimation of genome size for Psammochloa villosa by flow cytometry and K-mer analysis[J]. Acta Prataculturae Sinica, 2022, 31(12): 133-145.
组分Composition | 浓度Concentration |
---|---|
氨基丁三醇Tris (mol·L-1) | 0.2 |
氢氯酸HCl (mol·L-1) | 4 |
氯化镁MgCl2·6H2O (mmol·L-1) | 2 |
乙二胺四乙酸二钠EDTA Na2·2H2O (mmol·L-1) | 86 |
氯化钠NaCl (mmol·L-1) | 10 |
焦亚硫酸钠Sodium pyrosulphite (%) | 1 |
聚乙烯吡咯烷酮PVP-10 (%) | 1 |
表1 木本植物缓冲解离液配比
Table 1 WPB dissociation solution proportion
组分Composition | 浓度Concentration |
---|---|
氨基丁三醇Tris (mol·L-1) | 0.2 |
氢氯酸HCl (mol·L-1) | 4 |
氯化镁MgCl2·6H2O (mmol·L-1) | 2 |
乙二胺四乙酸二钠EDTA Na2·2H2O (mmol·L-1) | 86 |
氯化钠NaCl (mmol·L-1) | 10 |
焦亚硫酸钠Sodium pyrosulphite (%) | 1 |
聚乙烯吡咯烷酮PVP-10 (%) | 1 |
数据集Data type | 读长Read length (bp) | 质量分数Q20 (%) | 质量分数Q30 (%) | GC含量GC content (%) |
---|---|---|---|---|
原始数据Raw data | 150; 150 | 96.1; 96.0 | 88.0; 88.6 | 43.5; 43.6 |
过滤数据Clean data | 150; 150 | 96.4; 96.7 | 88.3; 89.4 | 43.4; 43.4 |
表2 沙鞭survey建库测序数据统计
Table 2 Statistics of survey sequencing and library data of P. villosa
数据集Data type | 读长Read length (bp) | 质量分数Q20 (%) | 质量分数Q30 (%) | GC含量GC content (%) |
---|---|---|---|---|
原始数据Raw data | 150; 150 | 96.1; 96.0 | 88.0; 88.6 | 43.5; 43.6 |
过滤数据Clean data | 150; 150 | 96.4; 96.7 | 88.3; 89.4 | 43.4; 43.4 |
物种Species | 正向序列Forward sequence | 反向序列Reverse sequence | 总值Total values (%) |
---|---|---|---|
二穗短柄草Brachypodium distachyon | 159 | 176 | 1.68 |
水稻O. sativa | 168 | 158 | 1.63 |
普通小麦Triticum aestivum | 133 | 118 | 1.26 |
瑞氏针茅Stipa richteriana | 91 | 85 | 0.88 |
大麦Hordeum vulgare | 63 | 64 | 0.64 |
表3 沙鞭survey文库比对NCBI核苷酸数据库
Table 3 The alignment on NT databases for survey library of P. villosa
物种Species | 正向序列Forward sequence | 反向序列Reverse sequence | 总值Total values (%) |
---|---|---|---|
二穗短柄草Brachypodium distachyon | 159 | 176 | 1.68 |
水稻O. sativa | 168 | 158 | 1.63 |
普通小麦Triticum aestivum | 133 | 118 | 1.26 |
瑞氏针茅Stipa richteriana | 91 | 85 | 0.88 |
大麦Hordeum vulgare | 63 | 64 | 0.64 |
1 | Ma Y Q. Flora of Inner Mongolia (2nd Edition, 5th Volume). Hohhot: Inner Mongolia People’s Publishing House, 1994. |
马毓泉. 内蒙古植物志(第2版, 第5卷). 呼和浩特: 内蒙古人民出版社, 1994. | |
2 | Liu Y X. Desert flora of China (1st Volume). Beijing: Science Press, 1985. |
刘瑛心. 中国沙漠植物志(第1卷). 北京: 科学出版社, 1985. | |
3 | Lu S L. Psammochloa—Flora of China (9th Volume). Beijing: Science Press, 1987. |
卢生莲. 沙鞭属—中国植物志(第9卷). 北京: 科学出版社, 1987. | |
4 | Guo B Z. Flora of China. Beijing: Science Press, 1987. |
郭本兆. 中国植物志. 北京: 科学出版社, 1987. | |
5 | Zhu Y J, Dong M, Huang Z Y. Effects of sand burial and seed size on seed germination and seedling emergence of Psammochloa villosa. Acta Phytoecologica Sinica, 2005, 29(5): 730-739. |
朱雅娟, 董鸣, 黄振英. 沙埋和种子大小对固沙禾草沙鞭的种子萌发与幼苗出土的影响. 植物生态学报, 2005, 29(5): 730-739. | |
6 | Huang Z Y, Dong M, Zhang S M. Strategies of seed germination on sand dune and seedling desiccation tolerance, of Psammochloa villosa (Poaceae). Acta Ecologica Sinica, 2005, 25(2): 298-303. |
黄振英, 董鸣, 张淑敏. 沙鞭(禾本科)种子在沙丘上的萌发策略及幼苗的耐干燥特性. 生态学报, 2005, 25(2): 298-303. | |
7 | Lv T, Liu Y P, Zhou Y H, et al. Germplasm collection and preliminary studies on genealogical differentiation of a desert species-Psammochloa villosa. Acta Agrestia Sinica, 2018, 26(3): 733-740. |
吕婷, 刘玉萍, 周勇辉, 等. 荒漠植物沙鞭(Psammochloa villosa)种质资源收集及谱系遗传分化初探. 草地学报, 2018, 26(3): 733-740. | |
8 | Lv T, Liu T, Liang R F, et al. Morphological variations of different populations from Psammochloa villosa, a peculiar sandy plant. Bulletin of Botanical Research, 2021, 41(1): 60-66. |
吕婷, 刘涛, 梁瑞芳, 等. 沙生植物沙鞭不同居群形态变异研究. 植物研究, 2021, 41(1): 60-66. | |
9 | Liu F, Ma Z L, Liu T, et al. Fruiting of Psammochloa villosa, an endemic desert plant, under different ecological and environmental conditions. Guihaia, 2021, 41(9): 1457-1464. |
刘峰, 马子兰, 刘涛, 等. 不同生态环境条件沙生植物沙鞭的结实研究. 广西植物, 2021, 41(9): 1457-1464. | |
10 | Li A, Ge S. Genetic variation and clonal diversity of Psammochloa villosa (Poaceae) detected by ISSR markers. Annals of Botany, 2001, 87(5): 585-590. |
11 | Lv T. Studies on genetic diversity of Psammochloa villosa, a peculiar sandy plant. Xining: Qinghai Normal University, 2019. |
吕婷. 沙生牧草沙鞭的遗传多样性研究. 西宁: 青海师范大学, 2019. | |
12 | Mei Q M, Dong B, Wang D, et al. Estimation of genome sizes of two Plantago species by flow cytometry and K-mer analysis. Molecular Plant Breeding, 2021, 19(8): 2564-2569. |
梅启明, 董斌, 王丹, 等. 基于流式细胞术和K-mer分析测定两种车前属植物基因组的大小. 分子植物育种, 2021, 19(8): 2564-2569. | |
13 | Liu Z D. Genetics (3rd Edition). Beijing: China Agriculture Press, 2005. |
刘祖洞. 遗传学(第三版). 北京: 中国农业出版社, 2005. | |
14 | Kim J H, Roh J Y, Kwon D H, et al. Estimation of the genome sizes of the chigger mites Leptotrombidium pallidum and Leptotrombidium scutellare based on quantitative PCR and K-mer analysis. Parasites & Vectors, 2014, 7(1): 279-287. |
15 | Bennett M D, Leitch I J. Plant genome size research: A field in focus. Annals of Botany, 2005, 95(1): 1-6. |
16 | Zonneveld B J M. Nuclear DNA contents of all species of Helleborus (Ranunculaceae) discriminate between species and sectional divisions. Plant Systematics and Evolution, 2001, 229(1/2): 125-130. |
17 | Bures P, Wang Y F, Horova L, et al. Genome size variation in central European species of Cirsium (Compositae) and their natural hybrids. Annals of Botany, 2004, 94(3): 353-363. |
18 | Morgan-Richards M, Trewick S A, Chapman H M, et al. Interspecific hybridization among Hieracium species in New Zealand: Evidence from flow cytometry. Heredity, 2004, 93(1): 34-42. |
19 | Jaume P, Oriane H, Dodsworth S, et al. Genome size diversity and its impact on the evolution of land plants. Genes, 2018, 9(2): 88: https://doi.org/10.3390/genes9020088. |
20 | Tian X M, Zhou X Y, Gong N. Applications of flow cytometry in plant research-analysis of nuclear DNA content and ploidy level in plant cells. Chinese Agricultural Science Bulletin, 2011, 27(9): 21-27. |
田新民, 周香艳, 弓娜. 流式细胞术在植物学研究中的应用——检测植物核DNA含量和倍性水平. 中国农学通报, 2011, 27(9): 21-27. | |
21 | Du W W, Wang X N, Duan Q, et al. Genome size comparison in 34 Begonia L.species. Journal of Plant Genetic Resources, 2018, 19(2): 370-376. |
杜文文, 王祥宁, 段青, 等. 34种秋海棠基因组大小比较与分析. 植物遗传资源学报, 2018, 19(2): 370-376. | |
22 | Wang X, Zhou J Y, Sun H G, et al. Genomic survey sequencing and estimation of genome size of Ammopiptanthus nanus. Journal of Plant Genetic Resources, 2018, 19(1): 144-150. |
王雪, 周佳熠, 孙会改, 等. 新疆沙冬青基因组调查测序与基因组大小预测. 植物遗传资源学报, 2018, 19(1): 144-150. | |
23 | Marescalchi O, Scali V, Zuccotti M. Genome size in parental and hybrid species of Bacillus (Insecta, Phasmatodea) from southeastern Sicily: A flow cytometric analysis. Genome,1990, 33(6): 789-793. |
24 | Fan X K, Yan X, Feng Y Y, et al. Genome size variations and species differentiation of Reaumuria soongarica. Biodiversity Science, 2021, 29(10): 1308-1320. |
范兴科, 燕霞, 冯媛媛, 等. 红砂基因组大小变异及物种分化. 生物多样性, 2021, 29(10): 1308-1320. | |
25 | He K, Lin K J, Wang G R, et al. Genome sizes of nine insect species determined by flow cytometry and K-mer analysis. Frontiers in Physiology, 2016, 24(7): 569-576. |
26 | Guan Y Z. Research of genomic relationship and genome size of Elymus L. on the Qinghai-Tibet Plateau. Zhengzhou: Henan Agricultural University, 2018. |
管永卓. 青藏高原披碱草属植物基因组亲缘关系及基因组大小研究. 郑州: 河南农业大学, 2018. | |
27 | Zhou X J, Liu M X, Lu X Y, et al. Genome survey sequencing and identification of genomic SSR markers for Rhododendron micranthum. Bioscience Reports, 2020, DOI: 10.1042/BSR20200988. |
28 | Guan R, Zhao Y P, Zhang H, et al. Draft genome of the living fossil Ginkgo biloba. GigaScience, 2016, 5(1): 49. |
29 | Albert V A, Barbazuk W B, dePamphilis C W, et al. The Amborella genome and the evolution of flowering plants. Science, 2013, DOI: 10.1126/science.1241089. |
30 | Huang Z Y, Shen F, Xia L H, et al. Genomic survey sequencing analysis of the Chinese Prunus salicina cultivars Qiuji. South China Fruits, 2020, 49(3): 102-104. |
黄振宇, 申飞, 夏乐晗, 等. 中国李品种“秋姬”基因组survey测序分析. 中国南方果树, 2020, 49(3): 102-104. | |
31 | Zhong Y D, Zhang X, Li Y Q, et al. Genome survey of Liriodendron chinense (Hemsl.) Sarg. Molecular Plant Breeding, 2017, 15(2): 507-512. |
钟永达, 张新, 李彦强, 等. 鹅掌楸全基因组调查. 分子植物育种, 2017, 15(2): 507-512. | |
32 | Editorial Committee of Chinese Academy of Sciences. The flora of China. Beijing: Science Press, 2002 |
中国科学院中国植物志编辑委员会. 中国植物志. 北京: 科学出版社, 2002. | |
33 | Li G S, Cao B, Bai C K. Correlation analysis between genome size and seed characteristics in Poaceae plants. Bulletin of Botanical Research, 2012, 32(6): 701-706. |
李桂双, 曹博, 白成科. 禾本科植物基因组大小与种子特性的相关性分析. 植物研究, 2012, 32(6): 701-706. | |
34 | Deng G T, Liu Q B, Jiang J X, et al. Estimation of genome size of Miscanthus floridulus. Journal of Plant Genetic Resources, 2013, 14(2): 339-341. |
邓果特, 刘清波, 蒋建雄, 等. 五节芒基因组大小测定. 植物遗传资源学报, 2013, 14(2): 339-341. | |
35 | Gui Y J, Wang S, Quan L Y, et al. Comparing analysis of genome size and sequence construction for Phyllostachys pubescens. Scientia Sinica (C: Vitae), 2007, 37(4): 488-492. |
桂毅杰, 王晟, 全丽艳, 等. 毛竹基因组大小和序列构成的比较分析.中国科学(C辑:生命科学), 2007, 37(4): 488-492. | |
36 | Li Z, Yun L, Wang J, et al. Dentification of chromosome ploidy of Psathyrostachys juncea germplasm and prediction of genome size. Journal of Northwest A&F University (Nature Science Edition), 2020, 48(2): 26-33. |
李珍, 云岚, 王俊, 等. 新麦草种质染色体倍性鉴定及基因组估测. 西北农林科技大学学报(自然科学版), 2020, 48(2): 26-33. | |
37 | Wang Y N, Liu Y P, Liu X L, et al. Chromosome number and karyotype analysis from different populations of Psammochloa villosa (Poaceae). Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(9): 1489-1499. |
王亚男, 刘玉萍, 刘雪利, 等. 沙鞭不同居群染色体数目及核型分析. 西北植物学报, 2021, 41(9): 1489-1499. | |
38 | Chen H G, Zhao W L, Jin L, et al. Study on dormancy and breaking methods of Meconopsis punicea Maxim. Acta Agrestia Sinica, 2021, 29(2): 402-406. |
陈红刚, 赵文龙, 晋玲, 等. 红花绿绒蒿种子休眠及破除方法研究. 草地学报, 2021, 29(2): 402-406. | |
39 | Huang Y L, Xiang J L, Yin K D. Differential gene expression analysis of the Coix transcriptome under PEG stress. Maydica, 2018, 62(1): 1-9. |
40 | Loureiro J, Rodriguez E, Dolezel J, et al. Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species. Annals of Botany, 2007, 100(4): 875-888. |
41 | Dolezel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols, 2007, 2(9): 2233-2242. |
42 | Dolezel J, Bartos J. Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany, 2005, 95(1): 99-110. |
43 | Zhu M, Wang Y P, Xiong W B, et al. Genome size estimation for three Iridaceae plants by using flow cytometry. Journal of Chinese Medicinal Materials, 2018, 41(10): 2306-2310. |
朱敏, 王云鹏, 熊文波, 等. 流式细胞仪测定三种鸢尾科植物基因组的大小. 中药材, 2018, 41(10): 2306-2310. | |
44 | Lan B X, Wang L, Wu Z K, et al. Rapid miniprep extraction of genomic DNA from micro-endosperm maize with modified CTAB method. Genomics and Applied Biology, 2015, 34(1): 190-194. |
蓝碧秀, 王凛, 吴子恺, 等. 利用改良CTAB法快速小量提取微胚乳玉米基因组DNA. 基因组学与应用生物学, 2015, 34(1): 190-194. | |
45 | Simbolo M, Gottardi M, Corbo V, et al. DNA qualification workflow for next generation sequencing of histopathological samples. PLoS One, 2013, 8(6): e62692. |
46 | Ponti G, Maccaferri M, Manfredini M, et al. The value of fluorimetry (Qubit) and spectrophotometry (NanoDrop) in the quantification of cell-free DNA (cfDNA) in malignant melanoma and prostate cancer patients. Clinica Chimica Acta, 2018, 478: 14-19. |
47 | Liu J, Ma W L, Li L, et al. Applying Agilent 2100 Bioanalyzer to analyze restriction displayed HIV DNA fragments. Chinese Journal of Biochemistry and Molecular Biology, 2005, 21(2): 267-272. |
刘佳, 马文丽, 李凌, 等. 应用Agilent 2100 Bioanalyzer分析限制性显示技术制备的HIV片段库. 中国生物化学与分子生物学报, 2005, 21(2): 267-272. | |
48 | Li R, Fan W, Tian G, et al. The sequence and de novo assembly of the giant panda genome. Nature, 2010, 463: 311-317. |
49 | Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of K-mers. Bioinformatics, 2010, 27(6): 764-770. |
50 | Wendl M C, Barbazuk W B. Extension of lander-waterman theory for sequencing filtered DNA libraries. BMC Bioinformatics, 2005, 6(1): 1-12. |
51 | Swift H. The constancy of desoxyribose nucleic acid in plant nuclei. Proceedings of the National Academy of Sciences of the United States of America, 1950, 36(11): 643-654. |
52 | Chen J J, Wang Y. Recent progress in plant genome size evolution. Hereditas, 2009, 31(5): 464-470. |
陈建军, 王瑛. 植物基因组大小进化的研究进展. 遗传, 2009, 31(5): 464-470. | |
53 | Jovtchev G, Schubert V, Meister A, et al. Nuclear DNA content and nuclear and cell volume are positively correlated in angiosperms. Cytogenetic & Genome Research, 2006, 114(1): 77-82. |
54 | Lavergne S, Muenke N J, Molofsky J. Genome size reduction can trigger rapid phenotypic evolution in invasive plants. Annals of Botany, 2010, 105(1): 109-116. |
55 | Zhou P. On variation of DNA C-values among herbaceous plants and its biological significances. Shanghai: Shanghai Normal University, 2013. |
周平. 草本植物DNA C-值变异及其生物学意义. 上海: 上海师范大学, 2013. | |
56 | Chen J H, Hao Z D, Guang X M, et al. Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation. Nature Plants, 2019, 5(1): 18-25. |
57 | Blanc G, Wolfe K H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. The Plant Cell, 2004, 16(7): 1667-1678. |
58 | Luo Y. The study genetic differentiation of Agropyron cristatum populations based on genomic size, phenotypic traits and chlorophyll content. Chengdu: Sichuan Agricultural University, 2019. |
罗玉. 基于基因组大小和表型性状以及叶绿素含量的冰草居群遗传分化研究. 成都: 四川农业大学, 2019. | |
59 | Lynch M, Conery J S. The origins of genome complexity. Science, 2003, 302: 1401-1404. |
60 | Soltis D E, Soltis P S, Bennett M D, et al. Evolution of genome size in the angiosperms. American Journal of Botany, 2003, 90(11): 1596-1603. |
61 | Guo S L, Zhou P, Yin L P, et al. Interspecific and intraspecific variations of plant DNA C-values and its biological significance. Journal of Shanghai Normal University(Natural Sciences), 2011, 40(1): 102-110 |
郭水良, 周平, 印丽萍, 等. 植物DNA C-值在种间和种内的变异及其生物学意义. 上海师范大学学报(自然科学版), 2011, 40(1): 102-110. | |
62 | Duan X F, Chen X D, Xiong W B, et al. Genome size analysis of Desmodium styracifolium by flow cytometry and genome survey. Traditional Chinese Drug Research and Clinical Pharmacology, 2020, 31(10): 1239-1243. |
段先飞, 陈晓蝶, 熊文波, 等. 基于流式细胞术和K-mer分析的广金钱草基因组大小估测.中药新药与临床药理, 2020, 31(10): 1239-1243. | |
63 | Sun H G, Wei C X, Yang M X, et al. Estimation of genome sizes of Astragalus membranaceus based on flow cytometry and K-mer analysis. Chinese Traditional and Herbal Drugs, 2019, 50(6): 1448-1452. |
孙会改, 韦春香, 杨旻啸, 等. 基于流式细胞术和K-mer分析的黄芪基因组大小估测. 中草药, 2019, 50(6): 1448-1452. | |
64 | Guo Y T, Wei L J, Yan P. Analysis on karyotype of Achnatherum splendens. Journal of Shihezi University (Natural Science), 2003, 21(3): 223-225. |
郭玉堂, 魏凌基, 阎平. 芨芨草染色体的核型分析. 石河子大学学报(自然科学版), 2003, 21(3): 223-225. | |
65 | Chor B, Horn D, Goldman N, et al. Genomic DNA K-mer spectra: Models and modalities. Genome Biology, 2009, DOI: 10.1186/gb-2009-10-10-r108. |
66 | Valdebenito-Maturana B, Riadi G. GSER (a genome size estimator using R): A pipeline for quality assessment of sequenced genome libraries through genome size estimation. Interface Focus, 2021, DOI: 10.1098/rsfs.2020.0077. |
67 | Liu B H, Shi Y J, Yuan J Y, et al. Estimation of genomic characteristics by analyzing K-mer frequency in de novo genome projects. arXiv, 2013, 1308: https://doi.org/10.48550/arXiv.1308.2012. |
68 | Ren G P, Jiang Y Y, Li A, et al. The genome sequence provides insights into salt tolerance of Achnatherum splendens (Gramineae), a constructive species of alkaline grassland. Plant Biotechnology Journal, 2021, 20(1): 116-128. |
69 | Huang A J, Zhou J Y, Li T Z, et al. Flow cytometry and K-mer analysis estimates of genome size of Sophora alopecuroides. Chinese Traditional and Herbal Drugs, 2019, 50(24): 6098-6102. |
黄阿晶, 周佳熠, 李天泽, 等. 基于流式细胞术和K-mer分析的苦豆子基因组大小估测. 中草药, 2019, 50(24): 6098-6102. | |
70 | Pan Y, Cheng S F. Research progress on oat genomics study. Journal of Plant Genetic Resources, 2021, 22(2): 304-308. |
潘莹, 程时锋. 燕麦基因组学研究进展. 植物遗传资源学报, 2021, 22(2): 304-308. | |
71 | Huang L K, Feng G Y, Yan H D, et al. Genome assembly provides insights into the genome evolution and flowering regulation of orchardgras. Plant Biotechnology Journal, 2020, 18(2): 373-388. |
72 | Wu F. Study on whole genome sequencing and functional genes of key traits in Cleistogenes songorica and Melilotus albus. Lanzhou: Lanzhou University, 2021. |
吴凡. 无芒隐子草和白花草木樨全基因组及其关键性状相关功能基因研究. 兰州: 兰州大学, 2021. | |
73 | Wang D D, Zheng Z Y, Li Y, et al. Which factors contribute most to genome size variation within angiosperms? Ecology and Evolution, 2021, 11(6): 2660-2668. |
74 | Zhao M, Yang Q X, Wang S, et al. Determination of genome size of four species of Fritillariae cirrhosae by flow cytometry. Molecular Plant Breeding, 2021, 11: 1-12. |
赵敏, 杨秋雄, 王硕, 等. 流式细胞术测定川贝母四种基源植物基因组大小. 分子植物育种, 2021, 11: 1-12. | |
75 | Shao C, Li Y Q, Luo A, et al. Relationship between functional traits and genome size variation of angiosperm with different life forms. Biodiversity Science, 2021, 29(5): 575-585. |
邵晨, 李耀琪, 罗奥, 等. 不同生活型被子植物功能性状与基因组大小的关系. 生物多样性, 2021, 29(5): 575-585. | |
76 | Li X Y, Wang X Y. Effects of repetitive sequences to evolution of plant genome size. Journal of North China University of Science and Technology (Natural Science Edition), 2021, 43(4): 98-107. |
李新玉, 王希胤. 重复序列对植物基因组大小进化的影响. 华北理工大学学报(自然科学版), 2021, 43(4): 98-107. | |
77 | Huang S, Li R, Zhang Z, et al. The genome of cucumber, Cucumis sativus L. Nature Genetics, 2009, 41(12): 1275-1281. |
78 | Chumová Z, Záveská E, Hloušková P, et al. Repeat proliferation and partial endoreplication jointly shape the patterns of genome size evolution in orchids. Plant Journal, 2021, 107(2): 511-524. |
[1] | 李淑洁, 张金文, 裴怀弟, 王红梅, 罗俊杰, 林玉红. 兰州百合同源四倍体诱导及其基因组大小估算[J]. 草业学报, 2020, 29(3): 190-196. |
[2] | 钟小仙,刘智微,刘伟国,崔莉莉,吴娟子,张建丽. 六倍体杂交狼尾草体细胞突变体特异性分析[J]. 草业学报, 2014, 23(4): 107-113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||