草业学报 ›› 2022, Vol. 31 ›› Issue (12): 118-132.DOI: 10.11686/cyxb2021493
• 研究论文 • 上一篇
收稿日期:
2021-12-28
修回日期:
2022-03-14
出版日期:
2022-12-20
发布日期:
2022-10-17
通讯作者:
史毅
作者简介:
E-mail: shiy@gsau.edu.cn基金资助:
Ning ZHAO1(), Hui-ling MA1, Ran ZHANG1, Jin-qing ZHANG1, Yi SHI2()
Received:
2021-12-28
Revised:
2022-03-14
Online:
2022-12-20
Published:
2022-10-17
Contact:
Yi SHI
摘要:
为了提高匍匐翦股颖的越夏能力,本试验以匍匐翦股颖Penn A4为材料,模拟设置人工气候热胁迫(37 ℃/32 ℃,昼/夜),通过叶面喷施300 μmol·L-1 2,3-丁二醇(BD),测定分析BD对Penn A4盆栽苗在热胁迫第0(BD预处理前)、7、42 天及恢复常温第10天时叶片内源激素含量及其相关基因表达的影响。结果表明:外源BD提高了热胁迫7 d 时Penn A4 细胞分裂素、赤霉素3、茉莉酸类含量,降低了生长素、水杨酸、脱落酸、1-氨基环丙烷羧酸含量,并抑制了其相关基因的表达,从而促进了蒸腾降温及植株营养生长;胁迫42 d时,BD上调各个激素相关基因的表达量,通过促进内源激素运输降低了叶片活性激素含量,从而抑制了植株营养生长,为Penn A4抵御长时间热胁迫保存了能量,并提高了其存活几率。综上,BD可通过调节内源激素代谢加快短期胁迫下Penn A4生长速率及蒸腾散热,抑制长期胁迫下植株的衰老和生长速率来提高Penn A4耐热性。
赵宁, 马晖玲, 张然, 张金青, 史毅. 丁二醇对热胁迫下匍匐翦股颖内源激素及其相关基因表达水平的调控[J]. 草业学报, 2022, 31(12): 118-132.
Ning ZHAO, Hui-ling MA, Ran ZHANG, Jin-qing ZHANG, Yi SHI. Regulatory effects of butanediol on the expression level of endogenous hormones and related genes in creeping bentgrass under heat stress[J]. Acta Prataculturae Sinica, 2022, 31(12): 118-132.
激素类型Hormone type | 激素名称Hormone name |
---|---|
细胞分裂素Cytokinin (CTK) | 异戊烯基腺嘌呤 Isopentenyladenine (iP) |
异戊烯腺嘌呤核苷 Isopentenyladenosine (iPR) | |
反式玉米素 Trans-zeatin (tZ) | |
顺式玉米素 Cis-zeatin (cZ) | |
茉莉酸Jasmonic acid (JA) | 茉莉酸 Jasmonic acid (JA) |
12-氧-植物二烯酸Cis-12-oxo-phytodienoic acid (cis-OPDA) | |
茉莉酸异亮氨酸 Jasmonoyl-isoleucine (JA-ILe) | |
生长素Auxin (IAA) | 吲哚乙酸 Indole-3-acetic acid (IAA) |
赤霉素Gibberellin (GA) | 赤霉素3 Gibberellin 3 (GA3) |
水杨酸Salicylic acid (SA) | 水杨酸 Salicylic acid ( SA) |
脱落酸Abscisic acid (ABA) | 脱落酸 Abscisic acid (ABA) |
乙烯Ethylene (ET) | 1-氨基环丙烷羧酸1-aminocyclopropane carboxylic acid (ACC) |
表1 待测内源激素类型及名称
Table 1 Types and names of endogenous hormones to be tested
激素类型Hormone type | 激素名称Hormone name |
---|---|
细胞分裂素Cytokinin (CTK) | 异戊烯基腺嘌呤 Isopentenyladenine (iP) |
异戊烯腺嘌呤核苷 Isopentenyladenosine (iPR) | |
反式玉米素 Trans-zeatin (tZ) | |
顺式玉米素 Cis-zeatin (cZ) | |
茉莉酸Jasmonic acid (JA) | 茉莉酸 Jasmonic acid (JA) |
12-氧-植物二烯酸Cis-12-oxo-phytodienoic acid (cis-OPDA) | |
茉莉酸异亮氨酸 Jasmonoyl-isoleucine (JA-ILe) | |
生长素Auxin (IAA) | 吲哚乙酸 Indole-3-acetic acid (IAA) |
赤霉素Gibberellin (GA) | 赤霉素3 Gibberellin 3 (GA3) |
水杨酸Salicylic acid (SA) | 水杨酸 Salicylic acid ( SA) |
脱落酸Abscisic acid (ABA) | 脱落酸 Abscisic acid (ABA) |
乙烯Ethylene (ET) | 1-氨基环丙烷羧酸1-aminocyclopropane carboxylic acid (ACC) |
项目 Item | 时间Time | ||||
---|---|---|---|---|---|
0 min | 10 min | 10.1 min | 11.1 min | 13 min | |
甲酸Formic acid | 98 | 2 | 98 | 98 | 98 |
乙腈Acetonitrile | 2 | 98 | 2 | 2 | 2 |
表2 流动相条件比例
Table 2 Proportion of mobile phase conditions (%)
项目 Item | 时间Time | ||||
---|---|---|---|---|---|
0 min | 10 min | 10.1 min | 11.1 min | 13 min | |
甲酸Formic acid | 98 | 2 | 98 | 98 | 98 |
乙腈Acetonitrile | 2 | 98 | 2 | 2 | 2 |
激素类型 Hormone type | 代谢酶名称 Metabolic enzyme name | 功能 Function |
---|---|---|
ABA | 脱落酸8'-羟化酶Abscisic acid 8'-hydroxylase 1-like (CYP707A) | 分解Break down |
9-顺-环氧类胡萝卜素双加氧酶9-cis-epoxy carotenoid dioxygenase (NCED) | 合成Synthesis | |
CTK | 磷酸转运蛋白Arabidopsis histidine phosphor transfer proteins (AHPs) | 信号转导Signal transduction |
细胞分裂素氧化酶Cytokinin oxidase (CKXs) | 分解Break down | |
顺式玉米素-O-葡糖基转移酶Cis-zeatin-O-glucosyltransferase (cZOGT) | 糖基化Glycosylation | |
细胞分裂素激活酶Lonely guy (LOG) | 合成Synthesis | |
ET | 1-氨基环丙烷-1-羧酸氧化酶1-aminocyclopropane-1-carboxylic acid oxidase (ACO) | 合成Synthesis |
乙烯响应因子Ethylene response factor (ERF) | 信号转导Signal transduction | |
乙烯受体Ethylene receptor (ETR) | 信号转导Signal transduction | |
GA3 | 赤霉素3-氧化酶2 Gibberellin 3-oxidase 2 (ga3ox2) | 合成Synthesis |
赤霉素受体Gibberellin receptor (GID1) | 信号转导Signal transduction | |
SA | 苯丙氨酸裂解酶Phenylalanine lyase (PAL) | 合成Synthesis |
水杨酸甲基转移酶1 Salicylate methyltransferase 1 (SAMTI ) | 信号转导Signal transduction | |
JA | 茉莉酸-酰胺合成酶Jasmonic acid-amido synthetase (JAR1) | 信号转导Signal transduction |
丙二烯氧化合酶Allene-oxide synthase1 (aos1) | 合成Synthesis | |
12-氧-植物二烯酸还原酶12-oxophytodienoate reductase 1 (opr1) | 合成Synthesis | |
IAA | 吲哚-3-乙酸-酰胺合成酶Indole-3-acetic acid-amido synthetase (GH3) | 响应Response |
生长素外排载体Auxin efflux carrier component 2-like (PIN2) | 运输Transportation |
表3 内源激素代谢途径关键酶名称及功能
Table 3 The names and functions of key enzymes in the metabolic pathway of endogenous hormones
激素类型 Hormone type | 代谢酶名称 Metabolic enzyme name | 功能 Function |
---|---|---|
ABA | 脱落酸8'-羟化酶Abscisic acid 8'-hydroxylase 1-like (CYP707A) | 分解Break down |
9-顺-环氧类胡萝卜素双加氧酶9-cis-epoxy carotenoid dioxygenase (NCED) | 合成Synthesis | |
CTK | 磷酸转运蛋白Arabidopsis histidine phosphor transfer proteins (AHPs) | 信号转导Signal transduction |
细胞分裂素氧化酶Cytokinin oxidase (CKXs) | 分解Break down | |
顺式玉米素-O-葡糖基转移酶Cis-zeatin-O-glucosyltransferase (cZOGT) | 糖基化Glycosylation | |
细胞分裂素激活酶Lonely guy (LOG) | 合成Synthesis | |
ET | 1-氨基环丙烷-1-羧酸氧化酶1-aminocyclopropane-1-carboxylic acid oxidase (ACO) | 合成Synthesis |
乙烯响应因子Ethylene response factor (ERF) | 信号转导Signal transduction | |
乙烯受体Ethylene receptor (ETR) | 信号转导Signal transduction | |
GA3 | 赤霉素3-氧化酶2 Gibberellin 3-oxidase 2 (ga3ox2) | 合成Synthesis |
赤霉素受体Gibberellin receptor (GID1) | 信号转导Signal transduction | |
SA | 苯丙氨酸裂解酶Phenylalanine lyase (PAL) | 合成Synthesis |
水杨酸甲基转移酶1 Salicylate methyltransferase 1 (SAMTI ) | 信号转导Signal transduction | |
JA | 茉莉酸-酰胺合成酶Jasmonic acid-amido synthetase (JAR1) | 信号转导Signal transduction |
丙二烯氧化合酶Allene-oxide synthase1 (aos1) | 合成Synthesis | |
12-氧-植物二烯酸还原酶12-oxophytodienoate reductase 1 (opr1) | 合成Synthesis | |
IAA | 吲哚-3-乙酸-酰胺合成酶Indole-3-acetic acid-amido synthetase (GH3) | 响应Response |
生长素外排载体Auxin efflux carrier component 2-like (PIN2) | 运输Transportation |
基因名称Gene name | 上游引物Forward primer (5′-3′) | 下游引物Reverse primer (5′-3′) |
---|---|---|
CYP707A5 (TR6177_c1_g1) | AGCTCTACTCGTCCAAGAAC | ATGTGCGTCTTGAAGATGGG |
NCED1 (TR145951_c0_g1) | TCTTCGGAGATCGCCTCTA | ATAGCGGAAGGCGAAGAG |
NCED5 (TR124747_c0_g1) | TCTACTCGACCCGTCACAA | GGACCTGGTAGGGAAGATCG |
AHP1-like (TR15871_c0_g1) | GACAAGGTCGATGCTTTTGT | TTCTTCACTCTCTGAGCACC |
CKX1 (TR146360_c0_g1) | GATCATGGACCGACTACCTC | TTGGACGTTGGATATCTGGG |
cZOGT1 (TR11623_c0_g1) | CCTAGGAGGACTGGTATTCA | AAATACGATTTCCGAGGGAG |
LOG4 (TR327647_c0_g1) | AAGTTCGATCTTGTCTACGG | TGTTGTGTAGGATTTACCCG |
ACO (TR49332_c0_g2) | GATCAACACTGGCGACCAAG | TGCAATGGAGCGACGG |
ERF3-like (TR7546_c0_g1) | GACTTCCTGTCTAAGCTCCC | CTTCGAAGAATTCGTCTGCC |
ETR3 (TR95119_c0_g1) | AGGAGGAGCGATGATGTCAA | TGAAATCAGACACCTTGAGC |
ga3ox2 (TR7229_c0_g1) | TCTTCTGTGACGTGATGGAG | CACTTGGGGTACCAGTTGAG |
GID1 (TR118670_c0_g1) | CGTGATCATTTTCTTCCACGG | CCGGTAGTTGACCGAAATG |
PAL (TR24512_c0_g1) | GACAAGGAGGCAGTGTTCA | TCGAACTTGGTGATCTTGGA |
SAMT (TR44480_c0_g1) | TGACGAAACAAACATGCCG | AAGTCTCTCTGGAACTGCCT |
JAR1 (TR17215_c0_g1) | AAGATCAAAACCATTGCCCC | GATGTTAGACGGGTTCACGA |
JAR1 (TR97257_c0_g1) | CTTGGATCTAGCCTTCGTCG | CCAGGATCTCCTTGAAGGTT |
aos1 (TR673_c0_g1) | AGTACGTGTACTGGTCCAAC | CCTTAGTGACTGCGGAGAAT |
opr1 (TR8885_c0_g1) | TACTAGCCCAGACGAGAGAA | CGCTGCGAGTAGTATTTCAC |
GH3.4 (TR2539_c0_g3) | TGTGCTACTTCGAGTTCCTC | AGAAAAGGTGGTTACGACGA |
PIN2 (TR92903_c1_g1) | TCTACTCCATGTTCAACGGG | ATCATCATGCCAGGGTTGG |
Actin | TCCTCGGGTGAACTGGATGC | TCCACGCACTCCATCTGGTC |
表 4 实时荧光定量PCR引物
Table 4 Real-time fluorescence quantitative PCR primers
基因名称Gene name | 上游引物Forward primer (5′-3′) | 下游引物Reverse primer (5′-3′) |
---|---|---|
CYP707A5 (TR6177_c1_g1) | AGCTCTACTCGTCCAAGAAC | ATGTGCGTCTTGAAGATGGG |
NCED1 (TR145951_c0_g1) | TCTTCGGAGATCGCCTCTA | ATAGCGGAAGGCGAAGAG |
NCED5 (TR124747_c0_g1) | TCTACTCGACCCGTCACAA | GGACCTGGTAGGGAAGATCG |
AHP1-like (TR15871_c0_g1) | GACAAGGTCGATGCTTTTGT | TTCTTCACTCTCTGAGCACC |
CKX1 (TR146360_c0_g1) | GATCATGGACCGACTACCTC | TTGGACGTTGGATATCTGGG |
cZOGT1 (TR11623_c0_g1) | CCTAGGAGGACTGGTATTCA | AAATACGATTTCCGAGGGAG |
LOG4 (TR327647_c0_g1) | AAGTTCGATCTTGTCTACGG | TGTTGTGTAGGATTTACCCG |
ACO (TR49332_c0_g2) | GATCAACACTGGCGACCAAG | TGCAATGGAGCGACGG |
ERF3-like (TR7546_c0_g1) | GACTTCCTGTCTAAGCTCCC | CTTCGAAGAATTCGTCTGCC |
ETR3 (TR95119_c0_g1) | AGGAGGAGCGATGATGTCAA | TGAAATCAGACACCTTGAGC |
ga3ox2 (TR7229_c0_g1) | TCTTCTGTGACGTGATGGAG | CACTTGGGGTACCAGTTGAG |
GID1 (TR118670_c0_g1) | CGTGATCATTTTCTTCCACGG | CCGGTAGTTGACCGAAATG |
PAL (TR24512_c0_g1) | GACAAGGAGGCAGTGTTCA | TCGAACTTGGTGATCTTGGA |
SAMT (TR44480_c0_g1) | TGACGAAACAAACATGCCG | AAGTCTCTCTGGAACTGCCT |
JAR1 (TR17215_c0_g1) | AAGATCAAAACCATTGCCCC | GATGTTAGACGGGTTCACGA |
JAR1 (TR97257_c0_g1) | CTTGGATCTAGCCTTCGTCG | CCAGGATCTCCTTGAAGGTT |
aos1 (TR673_c0_g1) | AGTACGTGTACTGGTCCAAC | CCTTAGTGACTGCGGAGAAT |
opr1 (TR8885_c0_g1) | TACTAGCCCAGACGAGAGAA | CGCTGCGAGTAGTATTTCAC |
GH3.4 (TR2539_c0_g3) | TGTGCTACTTCGAGTTCCTC | AGAAAAGGTGGTTACGACGA |
PIN2 (TR92903_c1_g1) | TCTACTCCATGTTCAACGGG | ATCATCATGCCAGGGTTGG |
Actin | TCCTCGGGTGAACTGGATGC | TCCACGCACTCCATCTGGTC |
1 | Wang R M, Xiong X Y. Effect of temperature stress on growth and metabolism in perennial ryegrass. Acta Prataculturae Sinica, 2016, 25(8): 81-90. |
王日明, 熊兴耀. 高温胁迫对黑麦草生长及生理代谢的影响. 草业学报, 2016, 25(8): 81-90. | |
2 | Liu Z C, Han L B. Research on ecological and climatic regionalization for turfgrass in China based on ArcGIS. Pratacultural Science, 2018, 35(5): 1030-1039. |
刘卓成, 韩烈保. 基于ArcGIS的中国草坪生态气候区划研究. 草业科学, 2018, 35(5): 1030-1039. | |
3 | Luo Y, Liu X Y, Li W Q. Exogenously-supplied trehalose inhibits the growth of wheat seedlings under high temperature by affecting plant hormone levels and cell cycle processes. Plant Signaling & Behavior, 2021, 16(6): 10.1080/15592324. 2021.1907043. |
4 | Qin S. Study on preliminary characters of 9 turfgrass species suitable for golf course. Changsha: Hunan Agricultural University, 2013. |
覃帅. 九种草坪草适宜高尔夫球场的初步研究. 长沙: 湖南农业大学, 2013. | |
5 | Han L B, Mou X D, Sun B X, et al. Study on adaptability of abroad fine turfgrass in China. Pratacultural Science, 1999(S1):1-9, 14. |
韩烈保, 牟新待, 孙本信, 等. 国外优良草坪草在中国的引种适应性研究. 草业科学, 1999(S1): 1-9, 14. | |
6 | Tan Z Z, Zhang X X, Yang Z M. Research advances in heat resistance of cool-season turfgrasses. Acta Prataculturae Sinica, 2021, 30(9): 193-202. |
谭真真, 张夏香, 杨志民. 冷季型草坪草耐热性研究进展. 草业学报, 2021, 30(9): 193-202. | |
7 | Xia X J, Zhou Y H, Shi K, et al. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, 2015, 66(10): 2839-2856. |
8 | Niu J Y, Yan Z L, Lin R M, et al. Effect of drought stress and water recovery on endogenous hormone content in leaves of pea. Agricultural Research in the Arid Areas, 2009, 27(6): 154-159. |
牛俊义, 闫志利, 林瑞敏, 等. 干旱胁迫及复水对豌豆叶片内源激素含量的影响. 干旱地区农业研究, 2009, 27(6): 154-159. | |
9 | Li J, Li C Y. Seventy-year major research progress in plant hormones by Chinese scholars. Scientia Sinica Vitae, 2019, 49(10): 1227-1281. |
黎家, 李传友. 新中国成立70年来植物激素研究进展. 中国科学: 生命科学, 2019, 49(10): 1227-1281. | |
10 | Chan Z L, Zhang H, Liu M Y. Roles of plant growth regulators during abiotic stress responses of turfgrass and forage. Pratacultural Science, 2019, 36(12): 3007-3023. |
产祝龙, 张慧, 刘梦垚. 植物生长调节物质与草坪草及牧草的非生物逆境应答. 草业科学, 2019, 36(12): 3007-3023. | |
11 | Wang R M, Wang Z Q, Xiang Z X. Effect of exogenous γ-aminobutyric acid on the antioxidant defense system and phytohormones metabolism under high temperature stress in perennial ryegrass. Pratacultural Science, 2019, 36(1): 111-122. |
王日明, 王志强, 向佐湘. 外源γ-氨基丁酸对高温胁迫下黑麦草抗氧化防御系统及激素代谢的影响. 草业科学, 2019, 36(1): 111-122. | |
12 | Cheng L, Sun R R, Wang F Y, et al. Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit. Journal of Zhejiang University, 2012, 13(4): 283-297. |
13 | Imran M, Aaqil K M, Shahzad R, et al. Melatonin ameliorates thermotolerance in soybean seedling through balancing redox homeostasis and modulating antioxidant defense, phytohormones and polyamines biosynthesis. Molecules, 2021, 26(17): 5116. |
14 | Su Y N, Huang Y Z, Dong X T, et al. Exogenous methyl jasmonate improves heat tolerance of perennial ryegrass through alteration of osmotic adjustment, antioxidant defense, and expression of jasmonic acid-responsive genes. Frontiers in Plant Science, 2021, 12: 664519. |
15 | Li L Z. Effects of butyldiol induction on physiological and biochemical characteristics of Agrostis stolonifera under drought stress. Grassland and Turf, 2020, 40(3): 57-62. |
李灵章. 干旱胁迫下丁二醇诱导对匍匐翦股颖幼苗生理生化指标的影响. 草原与草坪, 2020, 40(3): 57-62. | |
16 | Shi Y. The molecular response of induced disease resistance and heat tolerance of creeping bentgrass activated by 2, 3-butanediol. Lanzhou: Gansu Agricultural University, 2017. |
史毅. 丁二醇诱导匍匐翦股颖抗病、耐热性及其分子应答研究. 兰州: 甘肃农业大学, 2017. | |
17 | Sun N N. Responses of maize leaf and kernel to heat stress. Zhengzhou: Henan Agricultural University, 2017. |
孙宁宁. 玉米叶、粒对高温胁迫的响应. 郑州: 河南农业大学, 2017. | |
18 | Veselov D S, Kudoyarova G R, Kudryakova N V, et al. Role of cytokinins in stress resistance of plants. Russian Journal of Plant Physiology, 2017, 64(1): 15-27. |
19 | Jana D, Martin Č, Helena Š, et al. The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Science, 2015, 231: 52-61. |
20 | Wang W Q. The role and regulatory mechanism of cytokinins in wheat stay-green mutant tasg1. Tai’an: Shandong Agricultural University, 2018. |
王文强. 细胞分裂素代谢在小麦滞绿突变体tasg1中的作用及调控机制. 泰安: 山东农业大学, 2018. | |
21 | Zhao C J, Kang S J, Wang J H, et al. Research on phytohormones regulating mechanism of the senescence of wheat leaves. Acta Agriculturae Boreali-Sinica, 2000, 15(2): 53-56. |
赵春江, 康书江, 王纪华, 等. 植物内源激素对小麦叶片衰老的调控机理研究. 华北农学报, 2000, 15(2): 53-56. | |
22 | Staswick P E, Serban B, Rowe M, et al. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant cell, 2005, 17(2): 616-627. |
23 | Javier B, Linda M R, Jeonga Y, et al. Local auxin biosynthesis is a key regulator of plant development. Developmental Cell, 2018, 47(3): 306-318. |
24 | Yu C L, Dong W Q, Zhang C H. Research progress of auxin transport carrier. Agricultural Science Journal of Yanbian University, 2016, 38(4): 359-366. |
俞晨良, 董文其, 张成浩. 生长素运输载体研究进展. 延边大学农学学报, 2016, 38(4): 359-366. | |
25 | Hu Q N, Zhang S X, Huang B R. Strigolactones promote leaf elongation in tall fescue through upregulation of cell cycle genes and downregulation of auxin transport genes in tall fescue under different temperature regimes. International Journal of Molecular Sciences, 2019, 20(8): 10.3390/ijms20081836. |
26 | Skirycz A, Inzé D. More from less: Plant growth under limited water. Current Opinion in Biotechnology, 2010, 21(2): 197-203. |
27 | Tan P H. Functional study of a novel gibberellin 2-oxidases gene, PpGA2ox, from kentucky blue grass (Poa pratensis L.). Beijing: Beijing Forestry University, 2020. |
檀鹏辉. 草地早熟禾赤霉素氧化酶基因PpGA2ox的功能研究. 北京: 北京林业大学, 2020. | |
28 | Wang P H. Screening of reference genes and analysis of gibberellin related genes in ‘Nantongxiaofang’ persimmon (Diospyros kaki Linn. CV. Nantongxiaofangshi). Nanjing: Nanjing Agricultural University, 2017. |
王沛鸿. ‘南通小方柿’内参基因筛选及赤霉素相关基因表达分析. 南京: 南京农业大学, 2017. | |
29 | Jia W S, Meng Q Y, Tian Y T. Source and sink leaf metabolism of 14C-assimilates and the factors in relation to distribution and translocation of assimilates in Populus I214. Journal of Beijing Forestry University, 1991(3): 62-68. |
贾文锁, 孟庆英, 田砚亭. Ⅰ214杨树苗源叶和库14C-同化物的代谢及影响其运输、分配的因素. 北京林业大学学报, 1991(3): 62-68. | |
30 | Zhang M J, Zhu L, Xia Q Z. Research progress on the regulation of plant hormones to stress responses. Journal of Hubei University (Natural Science), 2021, 43(3): 242-253, 263. |
张明菊, 朱莉, 夏启中. 植物激素对胁迫反应调控的研究进展. 湖北大学学报(自然科学版), 2021, 43(3): 242-253, 263. | |
31 | Zheng F, He Z P. Effect of high temperature stress on transportation and distribution of 14C-assimilates in grain filling period of winter wheat. Journal of China Agricultural University, 1999(1): 73-76. |
郑飞, 何钟佩. 高温胁迫对冬小麦灌浆期物质运输与分配的影响. 中国农业大学学报, 1999(1): 73-76. | |
32 | Clarke S M, Cristescu S M, Miersch O, et al. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. The New Phytologist, 2009, 182(1): 175-187. |
33 | Gfeller A, Baerenfaller K, Loscos J, et al. Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves. Plant Physiology, 2011, 156(4): 1797-1807. |
34 | Li Y H, Xiao N W, Liu Y B. Mechanisms of repression and termination of jasmonate signaling in plant defense. Journal of Plant Protection, 2021, 48(3): 563-569. |
李永华, 肖能文, 刘勇波. 植物防御中茉莉酸信号通路抑制与终止的作用机制. 植物保护学报, 2021, 48(3): 563-569. | |
35 | Bai X J, Xu L Z, Jia R R, et al. Cloning and expression analysis of HLB-associated salicylic acid carboxyl methyltransferase gene CsSAMT-1 in citrus. Acta Horticulturae Sinica, 2017, 44(12): 2265-2274. |
白晓晶, 许兰珍, 贾瑞瑞, 等. 柑橘黄龙病相关水杨酸羧基甲基转移酶基因CsSAMT-1的克隆与表达分析. 园艺学报, 2017, 44(12): 2265-2274. | |
36 | Miura K, Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 2014, 5(4): 4. |
37 | Yuan S, Lin H H. Role of salicylic acid in plant abiotic stress. Zeitschrift für Naturforschung C, 2008, 63(5/6): 313-320. |
38 | Xiang C C, Zhu Y L, Wei M, et al. Effects of exogenous salicylic acid on the growth and flowering of Zinnia elegans. Hubei Agricultural Sciences, 2019, 58(17): 60-62. |
相程程, 朱彦霖, 魏敏, 等. 外源水杨酸对百日草生长及开花的影响. 湖北农业科学, 2019, 58(17): 60-62. | |
39 | Dai H G, Dong W K, Chai S J, et al. The growth and physiological characteristics of Astragalus cicer L. seedlings under simulated drought stress. Chinese Journal of Grassland, 2021, 43(10): 63-75. |
戴海根, 董文科, 柴澍杰, 等. 模拟干旱胁迫下鹰嘴紫云英幼苗生长及生理特性. 中国草地学报, 2021, 43(10): 63-75. | |
40 | Wang L J, Huang W D, Yu F Y. Effects of elevated temperature on transportation and distribution of 14C-salicylic acid in grape seedlings. Acta Physiologysiologica Sinica, 2001(2): 129-134. |
王利军, 黄卫东, 于风义. 高温胁迫对14C-水杨酸在葡萄苗中运转分配的影响. 植物生理学报, 2001(2): 129-134. | |
41 | Rong D Y. The molecular mechanism study of salicylic acid and methyl salicylic acid regulation of pollen tube growth in Arabidopsis. Changsha: Hunan University, 2017. |
荣朵艳. 水杨酸和水杨酸甲酯对拟南芥花粉管生长调控的分子机制研究. 长沙: 湖南大学, 2017. | |
42 | Liu L X. Analysis of the mechanism of crop resistance to high temperature stress. World Tropical Agriculture Information, 2021(7): 43-44. |
刘丽雪. 作物抵御高温胁迫的机理分析. 世界热带农业信息, 2021(7): 43-44. | |
43 | Qiu L, Zhao L S, Xie Y D, et al. Advances in research on premature senescence in plants. Journal of Plant Genetic Resources, 2022, 23(2): 346-357. |
仇琳, 赵林姝, 谢永盾, 等. 植物早衰研究进展. 植物遗传资源学报, 2022, 23(2): 346-357. | |
44 | Vanderstraeten L, Depaepe T, Bertrand S, et al. The ethylene precursor ACC affects early vegetative development independently of ethylene signaling. Frontiers in Plant Science, 2019, 10: 1591. |
45 | Liu C Y, Chen X, Long Y Q, et al. Research advances in genes involved in ethylene biosynthesis and signal transduction during flower senescence. Biotechnology Bulletin, 2019, 35(3): 171-182. |
刘畅宇, 陈勋, 龙雨青, 等. 乙烯生物合成及信号转导途径中介导花衰老相关基因的研究进展. 生物技术通报, 2019, 35(3): 171-182. | |
46 | Yang Y, Fan B, Shen L, et al. Exogenous no impact ethylene lever and the receptors expression of peel of mango fruit (Mangifera indica L.) under low temperature. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2014, 35(4): 79-85. |
杨杨, 范蓓, 申琳, 等. SNP对低温下芒果皮乙烯合成及受体表达的影响. 内蒙古农业大学学报(自然科学版), 2014, 35(4): 79-85. | |
47 | Pan C, Zhang H, Ma Q, et al. Role of ethylene biosynthesis and signaling in elevated CO2 induced heat stress response in tomato. Planta, 2019, 250(2): 563-572. |
48 | Mou W S, Ying T J. Study progress on ethylene signal transduction. Acta Horticulturae Sinica, 2014, 41(9): 1895-1912. |
牟望舒, 应铁进. 植物乙烯信号转导研究进展. 园艺学报, 2014, 41(9): 1895-1912. |
[1] | 曾令霜, 李培英, 孙宗玖, 孙晓梵. 两类新疆狗牙根抗旱基因型抗氧化酶保护系统及其基因表达差异分析[J]. 草业学报, 2022, 31(7): 122-132. |
[2] | 赵娟娟, 车大璐, 郭玮婷, 张伟涛, 刘连超, 赵俐辰, 高玉红, 孙新胜, 李雪梅, 王媛. 复方中药对热应激条件下杂交小尾寒羊生产性能、生理参数和血液理化指标的影响[J]. 草业学报, 2022, 31(5): 178-189. |
[3] | 赵利清, 郝志刚, 崔笑岩, 彭向永. 赤霉素及其抑制剂调控草地早熟禾生长及赤霉素相关基因表达的研究[J]. 草业学报, 2022, 31(3): 85-91. |
[4] | 张国香, 郭卫冷, 毕铭钰, 张力爽, 王丹, 郭长虹. 紫花苜蓿CAX基因家族鉴定及其对非生物胁迫的响应分析[J]. 草业学报, 2022, 31(12): 106-117. |
[5] | 魏娜, 李艳鹏, 马艺桐, 刘文献. 全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析[J]. 草业学报, 2022, 31(1): 118-130. |
[6] | 张小芳, 魏小红, 刘放, 朱雪妹. PEG胁迫下紫花苜蓿幼苗内源激素对NO的响应[J]. 草业学报, 2021, 30(4): 160-169. |
[7] | 马倩, 闫启, 张正社, 吴凡, 张吉宇. 紫花苜蓿CCoAOMT基因家族的鉴定、进化及表达分析[J]. 草业学报, 2021, 30(11): 144-156. |
[8] | 李冬, 申洪涛, 王艳芳, 王悦华, 王丽君, 赵世民, 刘领. 外源褪黑素对干旱胁迫下烟草幼苗光合碳同化和内源激素的影响[J]. 草业学报, 2021, 30(1): 130-139. |
[9] | 张蓉, 陈光吉, 尚以顺, 李世歌, 李小冬, 熊先勤, 牟琼, 王小利, 冉伟男, 班宋智. 鲜饲金荞麦对热应激蛋鸡生产性能、蛋品质和血清指标的影响[J]. 草业学报, 2020, 29(9): 179-189. |
[10] | 刘燕, 于美玲, 张然, 牛奎举, 李玉珠, 张金青, 马晖玲. 甘肃野生草地早熟禾内源激素含量的变化与无融合生殖率的关系研究[J]. 草业学报, 2020, 29(7): 99-111. |
[11] | 鲍根生, 宋梅玲, 王玉琴, 刘静, 王宏生. 不同密度甘肃马先蒿寄生和内生真菌互作对紫花针茅内源激素及生物碱含量的影响[J]. 草业学报, 2020, 29(4): 147-156. |
[12] | 衣琨, 赵一航, 胡尧, 刘佳雪, 贺涛涛, 李旭, 宋鹏, 崔国文, 殷秀杰. GA3和6-BA对高加索三叶草根蘖芽生长及内源激素含量的影响[J]. 草业学报, 2020, 29(2): 22-30. |
[13] | 王宁, 付亚军, 袁美丽, 刘征阳, 张铭鑫, 米银法. GA3浸种对入侵植物节节麦种子破眠及发芽特性的影响[J]. 草业学报, 2020, 29(2): 73-81. |
[14] | 项洪涛, 齐德强, 李琬, 郑殿峰, 王月溪, 王彤彤, 王立志, 曾宪楠, 杨纯杰, 周行, 赵海东. 低温胁迫下外源ABA对开花期水稻叶鞘激素含量及抗寒生理的影响[J]. 草业学报, 2019, 28(4): 81-94. |
[15] | 姜红岩, 滕珂, 檀鹏辉, 尹淑霞. 日本结缕草ZjZFN1基因对拟南芥的转化及其耐旱性分析[J]. 草业学报, 2019, 28(4): 129-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||