草业学报 ›› 2025, Vol. 34 ›› Issue (5): 105-117.DOI: 10.11686/cyxb2024258
• 研究论文 • 上一篇
赛牙热木·哈力甫1(
), 杨莉2(
), 李冠宏1, 朱永琪1, 李东1
收稿日期:2024-07-02
修回日期:2024-09-23
出版日期:2025-05-20
发布日期:2025-03-20
作者简介:赛牙热木·哈力甫(1989-),女,新疆石河子人,副教授,博士。E-mail: 437246661@qq.com基金资助:
Halifu SAIYAREMU1(
), Li YANG2(
), Guan-hong LI1, Yong-qi ZHU1, Dong LI1
Received:2024-07-02
Revised:2024-09-23
Online:2025-05-20
Published:2025-03-20
摘要:
植原体会导致寄主植物黄化、顶枯、丛枝、簇生、小叶、矮化、花变叶等症状,迄今我国植原体病害有100多种,包括重要的经济作物、中草药及林木等病害。由植原体引起的苦豆子丛枝病导致寄主生长被抑制、种子绝收、产量降低等,对我国苦豆子相关产业带来了潜在的威胁。以植原体侵染感病苦豆子、健康苦豆子为研究对象,利用形态学、分子生物学、非靶向代谢组学分析苦豆子丛枝病病原及病原侵染对苦豆子代谢物的影响。结果表明引起苦豆子丛枝病的病原菌为16Sr V-B亚组成员;病原感染显著改变了苦豆子代谢物,差异代谢物主要注释到环境信息处理、遗传信息处理和新陈代谢三大功能,其中新陈代谢占92.38%,通过KEGG通路气泡图分析发现卟啉和叶绿素代谢及苯丙氨酸、酪氨酸和色氨酸的生物合成通路具有显著差异,初步推测病原菌的侵染主要通过寄主代谢物的变化引起寄主植物的感病,其中以上2个通路的变化对苦豆子丛枝病的发生具有重要的作用,即病原菌的侵染降低寄主光合能力从而引起营养匮乏及抗性降低引起感病。
赛牙热木·哈力甫, 杨莉, 李冠宏, 朱永琪, 李东. 基于非靶向代谢组学分析丛枝病感病与未感病苦豆子代谢物的差异[J]. 草业学报, 2025, 34(5): 105-117.
Halifu SAIYAREMU, Li YANG, Guan-hong LI, Yong-qi ZHU, Dong LI. Analysis of metabolite differences in Sophora alopecuroides infected and non-infected by witches’ broom disease based on non-targeted metabolomics[J]. Acta Prataculturae Sinica, 2025, 34(5): 105-117.
| 时间Time (min) | A (%) | B (%) |
|---|---|---|
| 0 | 98 | 2 |
| 1.5 | 98 | 2 |
| 3.0 | 15 | 85 |
| 10.0 | 0 | 100 |
| 10.1 | 98 | 2 |
| 11.0 | 98 | 2 |
| 12.0 | 98 | 2 |
表1 色谱梯度洗脱程序
Table 1 Gradient elution program in chromatography
| 时间Time (min) | A (%) | B (%) |
|---|---|---|
| 0 | 98 | 2 |
| 1.5 | 98 | 2 |
| 3.0 | 15 | 85 |
| 10.0 | 0 | 100 |
| 10.1 | 98 | 2 |
| 11.0 | 98 | 2 |
| 12.0 | 98 | 2 |
图2 不同组样品的数据质控分析A和B分别为正离子和负离子模式下QC样本之间的Pearson相关性分析;C和D分别为正离子和负离子模式下不同样本之间的主成分分析。A and B represent the Pearson correlation analysis among QC samples in positive ion and negative ion modes, respectively; C and D represent the PCA among different samples in positive ion and negative ion modes, respectively.
Fig.2 Data audit analysis of different samples
图3 不同组样品的PCA分析A和B分别为正离子和负离子模式下健康样品和感病样品的PCA分析。A and B represent the PCA analysis between CRA and CRB samples in positive ion and negative ion modes, respectively.
Fig.3 PCA analysis of different samples
图4 不同组样品的PLS-DA分析A和B分别为正离子和负离子模式下健康样品和感病样品的PLC-DA分析。A and B represent PLC-DA analysis between CRA and CRB samples in positive ion and negative ion modes, respectively.
Fig.4 PLS-DA analysis of different samples
模式 Pattern | 总代谢物 Total metabolites | 差异代谢物 Differential metabolites | 上调数 Up regulation | 下调数 Down regulation |
|---|---|---|---|---|
| 正离子Positive ion | 670 | 361 | 223 | 138 |
| 负离子Negative ion | 364 | 217 | 126 | 91 |
表2 差异代谢物筛选结果
Table 2 Differential metabolite screening results
模式 Pattern | 总代谢物 Total metabolites | 差异代谢物 Differential metabolites | 上调数 Up regulation | 下调数 Down regulation |
|---|---|---|---|---|
| 正离子Positive ion | 670 | 361 | 223 | 138 |
| 负离子Negative ion | 364 | 217 | 126 | 91 |
图5 差异代谢物聚类热图A和B分别为正离子和负离子模式下健康样品和感病样品的差异代谢物聚类热图。A and B represent heat map analysis between CRA and CRB samples in positive ion and negative ion modes, respectively.
Fig.5 Heat map of differential metabolite clustering
图8 卟啉和叶绿素部分代谢通路红色字体代表该代谢物上调;方框中数字代表酶的EC编号。The red font indicates that the metabolite is upregulated; The numbers in the box represent the enzyme commission number. 下同The same below.
Fig.8 Porphyrin and chlorophyll metabolic pathways
| 代谢物Metabolite | ID | 健康植株CRA | 感病植株CRB | FC=CRB/CRA |
|---|---|---|---|---|
| 卟啉原Porphobilinogen | Com_11857_neg | 26533130.21 | 64482547.45 | 2.43 |
| 原卟啉Ⅸ Protoporphyrin Ⅸ | Com_2543_neg | 3804321.43 | 45306217.92 | 11.90 |
| 胆红Bilirubin | Com_6145_neg | 19186067.00 | 161795366.00 | 8.40 |
| L-谷氨酸L-glutamic acid | Com_12661_neg | 175614518.60 | 17230857.15 | 0.10 |
| D-赤藓糖-4-磷酸D-erythrose 4-phosphate | Com_12658_pos | 481393.16 | 2098673.97 | 4.36 |
| L-色氨酸L-tryptophan | Com_8850_pos | 2216018.31 | 5757659.85 | 2.60 |
| L-酪氨酸L-tyrosine | Com_203_pos | 1769276119.00 | 455236147.10 | 0.26 |
| L-苯丙氨酸L-phenylalanine | Com_21_pos | 11760291258.00 | 2213525450.00 | 0.19 |
| 吲哚Indole | Com_250_pos | 1378106746.00 | 272702018.80 | 0.20 |
表3 部分代谢通路中代谢物的变化
Table 3 Metabolite changes in some metabolic pathways
| 代谢物Metabolite | ID | 健康植株CRA | 感病植株CRB | FC=CRB/CRA |
|---|---|---|---|---|
| 卟啉原Porphobilinogen | Com_11857_neg | 26533130.21 | 64482547.45 | 2.43 |
| 原卟啉Ⅸ Protoporphyrin Ⅸ | Com_2543_neg | 3804321.43 | 45306217.92 | 11.90 |
| 胆红Bilirubin | Com_6145_neg | 19186067.00 | 161795366.00 | 8.40 |
| L-谷氨酸L-glutamic acid | Com_12661_neg | 175614518.60 | 17230857.15 | 0.10 |
| D-赤藓糖-4-磷酸D-erythrose 4-phosphate | Com_12658_pos | 481393.16 | 2098673.97 | 4.36 |
| L-色氨酸L-tryptophan | Com_8850_pos | 2216018.31 | 5757659.85 | 2.60 |
| L-酪氨酸L-tyrosine | Com_203_pos | 1769276119.00 | 455236147.10 | 0.26 |
| L-苯丙氨酸L-phenylalanine | Com_21_pos | 11760291258.00 | 2213525450.00 | 0.19 |
| 吲哚Indole | Com_250_pos | 1378106746.00 | 272702018.80 | 0.20 |
| 1 | Li W H, Zhang J. The artificial cultivation techniques of Sophora alopecuroides. Contemporary Horticulture, 2023, 46(14): 37-39. |
| 李文海, 张军. 苦豆子人工栽培技术. 现代园艺, 2023, 46(14): 37-39. | |
| 2 | Chen L. Study on the resource chemistry of Sophora alopecuroides L. Yinchuan: Ningxia Medical University, 2017. |
| 陈丽. 苦豆子植物资源化学研究. 银川: 宁夏医科大学, 2017. | |
| 3 | Qi X C, Ye Z P, Zhao K, et al. Effects of Sophora alopecuroides as green manure on diurnal changes of photosynthetic performance and quality of melon. Soil and Fertilizer Sciences in China, 2019(4): 178-186. |
| 齐晓晨, 叶祖鹏, 赵库, 等. 苦豆子绿肥对甜瓜光合性能日变化及品质的影响. 中国土壤与肥料, 2019(4): 178-186. | |
| 4 | Sugio A, Maclean A M, Kingdom H N, et al. Diverse targets of phytoplasma effectors: From plant development to defense against insects. Annual Review of Phytopathology, 2011, 49(1): 175-195. |
| 5 | Minato N, Himeno M, Hoshi A, et al. The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Scientific Reports, 2014, 4: 7399. |
| 6 | Bertaccini A. Plants and phytoplasmas: When bacteria modify plants. Plants, 2022, 11: 1425. |
| 7 | Tang Y F, Lin Q, She X M, et al. Molecular identification of peanut witches’-broom phytoplasma in Guangdong province. Plant Protection, 2022, 48(5): 83-90. |
| 汤亚飞, 林祺, 佘小漫, 等. 广东花生丛枝病植原体的分子鉴定. 植物保护, 2022, 48(5): 83-90. | |
| 8 | Zhang X W, Zhu L L, Li K M. Molecular detection and identification of lucerne witches broom disease in Xinjiang. Pratacaltural Science, 2016, 33(6): 1183-1188. |
| 张芯伪, 朱里里, 李克梅. 新疆紫花苜蓿丛枝病分子检测及鉴定. 草业科学, 2016, 33(6): 1183-1188. | |
| 9 | Matich E K, Soria N G C, Aga D S, et al. Applications of metabolomics in assessing ecological effects of emerging contaminants and pollutants on plants. Journal of Hazardous Materials, 2019, 373 : 527-535. |
| 10 | Yan Z, Chen W Q, Zhang H, et al. Advances in research methods of filamentous fungal metabolomics. Plant Protection, 2021, 47(5): 98-109. |
| 闫震, 陈万权, 张昊, 等. 丝状真菌代谢组学研究方法进展. 植物保护, 2021, 47(5): 98-109. | |
| 11 | Zhao L, Chao J B, Guo J, et al. Study on plant resistance-related metabolites against pathogenic fungi based on metabolomics. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(6): 1071-1078. |
| 赵利, 钞建宾, 郭捷, 等. 基于代谢组学技术的植物抗病相关代谢物研究进展. 西北植物学报, 2021, 41(6): 1071-1078. | |
| 12 | Anwar M A, Galal D, Khalifa I, et al. Metabolomics: A compilation of applications for enhancing agricultural traits, disease resistance, biotic interaction, byproducts valorization, and quality control purposes of olive. Trends in Food Science & Technology, 2024, 143: 104311. |
| 13 | Huang X, Chu G, Wang J, et al. Integrated metabolomic and transcriptomic analysis of specialized metabolites and isoflavonoid biosynthesis in Sophora alopecuroides L. under different degrees of drought stress. Industrial Crops and Products, 2023, 197: 116595. |
| 14 | Li F. Identification and genetic differentiation of salt cedar witches’ broom phytoplasma in Southern Xinjiang. Alaer: Tarim University, 2022. |
| 李丰. 新疆南疆柽柳丛枝植原体鉴定及遗传分化研究. 阿拉尔: 塔里木大学, 2022. | |
| 15 | Lee I M, Hammond R W, Davis R E. Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology, 1993, 83(8): 834-842. |
| 16 | Li F, Lai G G, Zhao Z H, et al. Molecular identification of phytoplasma associated with willow phyllody in Xinjiang. Acta Agriculturae Boreali-Occidentalis Sinica, 2022, 31(10): 1374-1380. |
| 李丰, 赖刚刚, 赵志慧, 等. 新疆柳树花变叶植原体分子鉴定. 西北农业学报, 2022, 31(10): 1374-1380. | |
| 17 | Want E J, Masson P, Michopoulos F, et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nature Protocols, 2013, 8(1): 17-32. |
| 18 | Wen B, Mei Z, Zeng C, et al. MetaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinformatics, 2017, 18(1): 183. |
| 19 | Heischmann S, Quinn K, Cruickshank-quinn C, et al. Exploratory metabolomics profiling in the kainic acid rat model reveals depletion of 25-hydroxyvitamin D3 during epileptogenesis. Scientific Reports, 2016, 6: 31424. |
| 20 | Haspel J A, Chettimada S, Shaik R S, et al. Circadian rhythm reprogramming during lung inflammation. Nature Communications, 2014, 5: 4753. |
| 21 | Sreekumar A, Poisson L M, Rajendiran T M, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 2009, 457: 910-914. |
| 22 | Son N, Hur H J, Sung M J, et al. Liquid chromatography-mass spectrometry-based metabolomic analysis of livers from aged rats. Journal of Proteome Research, 2012, 11(4): 2551-2558. |
| 23 | Zhang Z P, Li H, Tian X X, et al. Differential analysis of metabolome of different resistant tomato rootstocks in response to nematode infection. Chinese Journal of Tropical Crops, 2024, 45(4): 1-8. |
| 张志鹏, 李涵, 田潇潇, 等. 不同抗性番茄砧木响应象耳豆根结线虫侵染的代谢组差异分析. 热带作物学报, 2024, 45(4):1-8. | |
| 24 | Gong Y H, Zhou G H, Peng S J, et al. Differential analysis of the metabolites on citrus pericarp brownspot based on untargeted metabolomics. Journal of Chinese Institute of Food Science and Technology, 2022, 22(8): 316-324. |
| 龚意辉, 周桂花, 彭淑君, 等. 基于非靶向代谢组学的柑橘果皮褐斑病发生过程中代谢差异分析. 中国食品学报, 2022, 22(8): 316-324. | |
| 25 | Jiang Y, Sun Y, Zheng D, et al. Physiological and transcriptome analyses for assessing the effects of exogenous uniconazole on drought tolerance in hemp (Cannabis sativa L.). Scientific Reports, 2021, 11: 14476 . |
| 26 | Martins D, Mesquita M Q, Neves M G P M S, et al. Photoinactivation of Pseudomonas syringae pv. actinidiae in kiwifruit plants by cationic porphyrins. Planta, 2018, 248: 409-421 . |
| 27 | Ferruzzi M G, Failla M L, Schwartz S J. Sodium copper chlorophyllin: In vitro digestive stability and accumulation by Caco-2 human intestinal cells. Journal of Agricultural and Food Chemistry, 2002, 50(7): 2173-2179. |
| 28 | Teixeira W F, Fagan E B, Soares L H, et al. Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Frontiers in Plant Science, 2017, 8: 327. |
| 29 | Govindaraju S, Arulselvi P I. Effect of cytokinin combined elicitors (l-phenylalanine, salicylic acid and chitosan) on in vitro propagation, secondary metabolites and molecular characterization of medicinal herb-Coleus aromaticus Benth (L) . Journal of the Saudi Society of Agricultural Sciences, 2018, 17(4): 435-444. |
| 30 | Qin Q L. Molecular cloning and characterization of transcription factors involved in lignin biosynthetic pathway and phenylpropanoid pathway in Ginkgo biloba L. Shanghai: Fudan University, 2007. |
| 秦秋琳. 银杏中与木质素合成和苯丙氨酸代谢相关的转录调控因子的克隆与研究. 上海: 复旦大学, 2007. | |
| 31 | Samani M R, Pirbalouti A G, Moattar F, et al. L-Phenylalanine and bio-fertilizers interaction effects on growth, yield and chemical compositions and content of essential oil from the sage (Salvia officinalis L.) leaves. Industrial Crops and Products, 2019, 137: 1-8. |
| 32 | Ramzan T, Shahbaz M, Maqsood M F, et al. Phenylalanine supply alleviates the drought stress in mustard (Brassica campestris) by modulating plant growth, photosynthesis, and antioxidant defense system. Plant Physiology and Biochemistry, 2023, 201: 107828. |
| 33 | Li C, Wang M, Guo Y, et al. Activation of the calcium signaling, mitogen-activated protein kinase cascade and phenylpropane metabolism contributes to the induction of disease resistance in pear fruit upon phenylalanine treatment. Postharvest Biology and Technology, 2024, 210: 112782. |
| [1] | 刘淑琪, 崔东, 刘文新, 杨海军, 杨延成, 江智诚, 闫江超, 刘江慧. 短期氮、水添加和刈割对苦豆子型退化草地植物群落特征与土壤理化性质的影响[J]. 草业学报, 2025, 34(3): 41-55. |
| [2] | 李国旗, 赵盼盼, 邵文山, 靳长青. 围封条件下荒漠草原两种植物群落土壤理化性状与酶活性的研究[J]. 草业学报, 2019, 28(7): 49-59. |
| [3] | 陆姗姗, 洪园淑, 刘萍. 苦豆子赖氨酸脱羧酶基因启动子在拟南芥中的表达分析[J]. 草业学报, 2019, 28(11): 159-167. |
| [4] | 李国旗, 邵文山, 赵盼盼, 靳长青. 封育对荒漠草原两种植物群落土壤种子库的影响[J]. 草业学报, 2018, 27(6): 52-61. |
| [5] | 刘影, 赵玉, 崔东, 冷家明, 董芳慧. 子叶损伤对苦豆子幼苗早期生长的影响[J]. 草业学报, 2017, 26(8): 139-145. |
| [6] | 杨毅, 陆姗姗, 刘萍, 田蕾. 苦豆子赖氨酸脱羧酶基因克隆与表达分析[J]. 草业学报, 2016, 25(8): 128-135. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||