草业学报 ›› 2025, Vol. 34 ›› Issue (7): 83-94.DOI: 10.11686/cyxb2024417
王颖1,2(
), 李明源1,2, 麦日艳古·亚生null1,2, 王继莲1,2(
)
收稿日期:2024-10-24
修回日期:2024-12-05
出版日期:2025-07-20
发布日期:2025-05-12
通讯作者:
王继莲
作者简介:E-mail: wjilian0710@163.com基金资助:
Ying WANG1,2(
), Ming-yuan LI1,2, Mairiyangu·Yasheng1,2, Ji-lian WANG1,2(
)
Received:2024-10-24
Revised:2024-12-05
Online:2025-07-20
Published:2025-05-12
Contact:
Ji-lian WANG
摘要:
为探究新疆托木尔峰不同植物根际土壤真菌群落结构和功能差异,利用高通量测序技术探究该保护区内野党参、早熟禾、老鹳草、紫花苜蓿4种植物根际土壤真菌群落结构差异,并分析不同植物根际土壤理化特性与真菌群落结构之间的相关性。结果表明,野党参根际土壤真菌的Shannon和Simpson指数显著高于老鹳草(P<0.05),但与早熟禾差异不显著。非度量多维尺度分析(non-metric multidimensional scaling, NMDS)结果表明,早熟禾根际土壤真菌群落与老鹳草、紫花苜蓿的差异性相对较小,而早熟禾、老鹳草、紫花苜蓿三者的根际土壤真菌群落与野党参的差异性相对较大。4种植物根际土壤的优势真菌门为子囊菌门、被孢霉门、担子菌门和壶菌门,而被孢霉目、肉座菌目是其优势菌目,但它们在不同植物中的相对丰度不尽相同。从营养类型看,4种植物根际土壤真菌优势营养模式均以腐生营养型为主,其相对丰度占32.1%~52.5%,第二优势营养型在野党参和老鹳草根际土壤中分别是共生营养型(9.3%)和病理腐生过渡型(4.1%),在早熟禾和紫花苜蓿中是病理营养型(8.3%和15.8%)。从功能类群看,未定义腐生真菌是4种植物的最优势功能菌群,其相对丰度占28.6%~44.2%,而其他功能群在不同植物中的占比各不相同。由此可见,托木尔峰根际土壤真菌群落结构在不同植物物种间有差异,研究结果可为深入理解山地植物的环境适应策略和该地区生态环境修复提供理论依据。
王颖, 李明源, 麦日艳古·亚生null, 王继莲. 新疆托木尔峰不同植物根际土壤真菌群落结构比较研究[J]. 草业学报, 2025, 34(7): 83-94.
Ying WANG, Ming-yuan LI, Mairiyangu·Yasheng, Ji-lian WANG. Comparative study of rhizosphere soil fungal community structure among different plants in Tomur Peak, Xinjiang[J]. Acta Prataculturae Sinica, 2025, 34(7): 83-94.
植被类型 Vegetation type | pH | TN (mg·kg-1) | AN (mg·kg-1) | AP (mg·kg-1) | TP (g·kg-1) | TK (g·kg-1) | AK (mg·kg-1) | SOM (g·kg-1) |
|---|---|---|---|---|---|---|---|---|
野党参 C. javanica | 8.05±0.23ab | 3.00±0.16a | 172.38±9.85a | 5.94±0.19c | 0.88±0.07a | 15.94±0.38a | 219.26±9.77b | 44.04±1.65c |
早熟禾 P. annua | 8.40±0.15a | 3.05±0.16a | 170.76±10.43a | 22.66±1.57b | 0.88±0.07a | 14.47±0.80ab | 773.66±13.13a | 62.18±3.03b |
老鹳草 G. wilfordii | 7.71±0.22b | 3.56±0.22a | 209.41±3.54a | 48.08±2.66a | 1.00±0.08a | 13.40±0.76bc | 246.26±7.38b | 86.16±1.89a |
紫花苜蓿 M. sativa | 7.69±0.17b | 2.93±1.07a | 162.96±44.79a | 16.08±6.73b | 0.96±0.18a | 12.72±0.25c | 236.50±12.31b | 47.99±13.08bc |
表1 4种植物根际土壤理化性质
Table 1 Physicochemical properties of rhizosphere soil among four plant species
植被类型 Vegetation type | pH | TN (mg·kg-1) | AN (mg·kg-1) | AP (mg·kg-1) | TP (g·kg-1) | TK (g·kg-1) | AK (mg·kg-1) | SOM (g·kg-1) |
|---|---|---|---|---|---|---|---|---|
野党参 C. javanica | 8.05±0.23ab | 3.00±0.16a | 172.38±9.85a | 5.94±0.19c | 0.88±0.07a | 15.94±0.38a | 219.26±9.77b | 44.04±1.65c |
早熟禾 P. annua | 8.40±0.15a | 3.05±0.16a | 170.76±10.43a | 22.66±1.57b | 0.88±0.07a | 14.47±0.80ab | 773.66±13.13a | 62.18±3.03b |
老鹳草 G. wilfordii | 7.71±0.22b | 3.56±0.22a | 209.41±3.54a | 48.08±2.66a | 1.00±0.08a | 13.40±0.76bc | 246.26±7.38b | 86.16±1.89a |
紫花苜蓿 M. sativa | 7.69±0.17b | 2.93±1.07a | 162.96±44.79a | 16.08±6.73b | 0.96±0.18a | 12.72±0.25c | 236.50±12.31b | 47.99±13.08bc |
图1 不同植被根际土壤真菌扩增子序列变体分析图中每个圈代表一种植物,重叠部分的数字代表样本之间共有的扩增子序列变体数目,非重叠部分的数字代表每个样本所特有的扩增子序列变体数目。Each circle in the figure represented a kind of plant. The numbers in the overlapping parts represented the number of amplicon sequence variants shared among the samples, while the numbers in the non-overlapping parts represented the number of amplicon sequence variants unique to each sample.
Fig.1 The analysis of fungi amplicon sequence variants (ASVs) among different plant species
| 植被类型Vegetation type | Chao1指数Chao1 index | 均匀度指数Pielou_e index | 香农指数Shannon index | 辛普森指数Simpson index |
|---|---|---|---|---|
| 野党参C. javanica | 285.31±30.91a | 0.78±0.04a | 6.36±0.30a | 0.97±0.01a |
| 早熟禾P. annua | 357.66±85.01a | 0.74±0.02a | 6.29±0.18a | 0.97±0.01ab |
| 老鹳草G. wilfordii | 262.02±42.78a | 0.72±0.02a | 5.71±0.24b | 0.94±0.01b |
| 紫花苜蓿M. sativa | 232.00±140.34a | 0.77±0.05a | 5.84±0.32ab | 0.96±0.01ab |
表2 4种植被根际土壤真菌α多样性指数
Table 2 The α-diversity indexes of rhizosphere soil fungi among four plant species
| 植被类型Vegetation type | Chao1指数Chao1 index | 均匀度指数Pielou_e index | 香农指数Shannon index | 辛普森指数Simpson index |
|---|---|---|---|---|
| 野党参C. javanica | 285.31±30.91a | 0.78±0.04a | 6.36±0.30a | 0.97±0.01a |
| 早熟禾P. annua | 357.66±85.01a | 0.74±0.02a | 6.29±0.18a | 0.97±0.01ab |
| 老鹳草G. wilfordii | 262.02±42.78a | 0.72±0.02a | 5.71±0.24b | 0.94±0.01b |
| 紫花苜蓿M. sativa | 232.00±140.34a | 0.77±0.05a | 5.84±0.32ab | 0.96±0.01ab |
图4 4种植物根际土壤真菌线性判别分析值图中显示的线性判别分析值均在4种植被之间存在显著差异(P<0.05)。“*”表示在不同植物间有显著差异(P<0.05)。The linear discriminant analysis (LDA) values shown in the figure exhibited significant differences among the four vegetation types, with ‘*’ indicating significant differences between different plant species (P<0.05).
Fig.4 The linear discriminant analysis (LDA) values of fungi in rhizosphere soil among four plant species
| 营养型Trophic type | 野党参C. javanica | 早熟禾P. annua | 老鹳草G. wilfordii | 紫花苜蓿M. sativa |
|---|---|---|---|---|
| 腐生营养型Saprotroph | 0.337±0.069b | 0.515±0.023a | 0.379±0.067b | 0.321±0.049b |
| 病理营养型Pathotroph | 0.033±0.010c | 0.083±0.011b | 0.014±0.004c | 0.158±0.054a |
| 共生营养型Symbiotroph | 0.093±0.022a | 0.041±0.005b | 0.005±0.000c | 0.014±0.004bc |
病理腐生共生过渡型 Pathotroph-saprotroph-symbiotroph | 0.018±0.003abc | 0.056±0.029ab | 0.011±0.005c | 0.064±0.036a |
病理腐生过渡型 Pathotroph-saprotroph | 0.007±0.006b | 0.018±0.007ab | 0.041±0.010a | 0.035±0.026ab |
病理共生过渡型 Pathotroph-symbiotroph | 0.024±0.009a | 0.021±0.011a | 0.007±0.003a | 0.023±0.011a |
腐生共生过渡型 Saprotroph-symbiotroph | 0.002±0.001a | 0.002±0.001a | 0.003±0.001a | 0.002±0.001a |
病原体腐生共生过渡型 Pathogen-saprotroph-symbiotroph | - | - | - | 0.000±0.000 |
表3 不同植物根际土壤真菌群落营养型相对丰度
Table 3 Relative abundance of trophic types in rhizosphere soil fungal communities among different plants
| 营养型Trophic type | 野党参C. javanica | 早熟禾P. annua | 老鹳草G. wilfordii | 紫花苜蓿M. sativa |
|---|---|---|---|---|
| 腐生营养型Saprotroph | 0.337±0.069b | 0.515±0.023a | 0.379±0.067b | 0.321±0.049b |
| 病理营养型Pathotroph | 0.033±0.010c | 0.083±0.011b | 0.014±0.004c | 0.158±0.054a |
| 共生营养型Symbiotroph | 0.093±0.022a | 0.041±0.005b | 0.005±0.000c | 0.014±0.004bc |
病理腐生共生过渡型 Pathotroph-saprotroph-symbiotroph | 0.018±0.003abc | 0.056±0.029ab | 0.011±0.005c | 0.064±0.036a |
病理腐生过渡型 Pathotroph-saprotroph | 0.007±0.006b | 0.018±0.007ab | 0.041±0.010a | 0.035±0.026ab |
病理共生过渡型 Pathotroph-symbiotroph | 0.024±0.009a | 0.021±0.011a | 0.007±0.003a | 0.023±0.011a |
腐生共生过渡型 Saprotroph-symbiotroph | 0.002±0.001a | 0.002±0.001a | 0.003±0.001a | 0.002±0.001a |
病原体腐生共生过渡型 Pathogen-saprotroph-symbiotroph | - | - | - | 0.000±0.000 |
| 功能类群Guild groups | 野党参C. javanica | 早熟禾P. annua | 老鹳草G. wilfordii | 紫花苜蓿M. sativa |
|---|---|---|---|---|
| 未定义腐生真菌Undefined-saprotroph | 0.304±0.067b | 0.442±0.022a | 0.355±0.056ab | 0.286±0.052b |
| 植物病原菌Plant-pathogen | 0.032±0.011c | 0.075±0.010b | 0.014±0.004c | 0.156±0.055a |
动物病原体-内生真菌-植物病原体-木材腐生真菌 Animal pathogen-endophyte-plant pathogen-wood saprotroph | 0.008±0.006b | 0.042±0.023a | 0.007±0.006b | 0.047±0.035a |
| 粪便腐生真菌Dung-saprotroph | 0.018±0.010b | 0.065±0.011a | 0.019±0.012b | 0.007±0.004b |
| 丛枝菌根真菌Arbuscular-mycorrhizal | 0.049±0.008a | 0.029±0.008b | 0.003±0.002c | 0.011±0.014bc |
植物病原体-土壤腐生物-木材腐生真菌 Plant pathogen-soil saprotroph-wood saprotroph | 0.002±0.001c | 0.003±0.001bc | 0.021±0.016a | 0.019±0.008ab |
| 外生菌根真菌Ectomycorrhizal | 0.027±0.014a | 0.000±0.000b | 0.003±0.001b | 0.002±0.001b |
| 内生真菌-植物-病原菌Endophyte-plant-pathogen | 0.024±0.009a | 0.021±0.011a | 0.008±0.002a | 0.024±0.011a |
粪便腐生真菌-未定义腐生菌-木材腐生真菌 Dung saprotroph-undefined saprotroph-wood saprotroph | - | - | - | 0.016±0.010 |
表4 不同植物根际土壤真菌群落优势功能类群相对丰度
Table 4 Relative abundance of dominant functional groups in rhizosphere soil fungal communities among different plant species
| 功能类群Guild groups | 野党参C. javanica | 早熟禾P. annua | 老鹳草G. wilfordii | 紫花苜蓿M. sativa |
|---|---|---|---|---|
| 未定义腐生真菌Undefined-saprotroph | 0.304±0.067b | 0.442±0.022a | 0.355±0.056ab | 0.286±0.052b |
| 植物病原菌Plant-pathogen | 0.032±0.011c | 0.075±0.010b | 0.014±0.004c | 0.156±0.055a |
动物病原体-内生真菌-植物病原体-木材腐生真菌 Animal pathogen-endophyte-plant pathogen-wood saprotroph | 0.008±0.006b | 0.042±0.023a | 0.007±0.006b | 0.047±0.035a |
| 粪便腐生真菌Dung-saprotroph | 0.018±0.010b | 0.065±0.011a | 0.019±0.012b | 0.007±0.004b |
| 丛枝菌根真菌Arbuscular-mycorrhizal | 0.049±0.008a | 0.029±0.008b | 0.003±0.002c | 0.011±0.014bc |
植物病原体-土壤腐生物-木材腐生真菌 Plant pathogen-soil saprotroph-wood saprotroph | 0.002±0.001c | 0.003±0.001bc | 0.021±0.016a | 0.019±0.008ab |
| 外生菌根真菌Ectomycorrhizal | 0.027±0.014a | 0.000±0.000b | 0.003±0.001b | 0.002±0.001b |
| 内生真菌-植物-病原菌Endophyte-plant-pathogen | 0.024±0.009a | 0.021±0.011a | 0.008±0.002a | 0.024±0.011a |
粪便腐生真菌-未定义腐生菌-木材腐生真菌 Dung saprotroph-undefined saprotroph-wood saprotroph | - | - | - | 0.016±0.010 |
| 项目Items | pH | TN | AN | AP | TP | TK | AK | SOM |
|---|---|---|---|---|---|---|---|---|
| Chao1指数Chao1 index | 0.296 | 0.083 | 0.049 | -0.028 | 0.443 | 0.163 | 0.490 | 0.119 |
| 均匀度指数Pielou_e index | 0.323 | -0.377 | -0.394 | -0.627** | -0.496 | 0.314 | -0.132 | -0.611* |
| 香农指数Shannon index | 0.591* | -0.094 | -0.145 | -0.515* | 0.048 | 0.558* | 0.352 | -0.322 |
| 辛普森指数Simpson index | 0.521* | -0.394 | -0.438 | -0.703** | -0.185 | 0.397 | 0.205 | -0.589* |
表5 真菌群落α多样性与生态因子相关分析
Table 5 Correlation analysis of fungal α-diversity indices and soil ecological factors
| 项目Items | pH | TN | AN | AP | TP | TK | AK | SOM |
|---|---|---|---|---|---|---|---|---|
| Chao1指数Chao1 index | 0.296 | 0.083 | 0.049 | -0.028 | 0.443 | 0.163 | 0.490 | 0.119 |
| 均匀度指数Pielou_e index | 0.323 | -0.377 | -0.394 | -0.627** | -0.496 | 0.314 | -0.132 | -0.611* |
| 香农指数Shannon index | 0.591* | -0.094 | -0.145 | -0.515* | 0.048 | 0.558* | 0.352 | -0.322 |
| 辛普森指数Simpson index | 0.521* | -0.394 | -0.438 | -0.703** | -0.185 | 0.397 | 0.205 | -0.589* |
| 1 | Chu Q Q. Characteristics of fungi community in rhizosphere soil of navel orange in southern Jiangxi Province. Shanghai: East China University of Science and Technology, 2023. |
| 褚奇奇. 赣南脐橙根际土壤真菌群落特征研究. 上海: 东华理工大学, 2023. | |
| 2 | Ding Z J, Tang M, Chen X, et al. Measuring rhizosphere effects of two tree species in a temperate forest: A comprehensive method comparison. Rhizosphere, 2019, 10(6): 100153. |
| 3 | Wu W W, Han X, Wang J P, et al. Alterations with plantation years of Fructus aurantii on rhizosphere microbiome and soil properties. Acta Pedologica Sinica, 2024, 61(6): 1729-1740. |
| 吴微微, 韩雪, 王继朋, 等. 种植年限对枳壳根际微生物群落和土壤性质的影响. 土壤学报, 2024, 61(6): 1729-1740. | |
| 4 | Chen J, Nan J, Xu D L, et al. Response differences between soil fungal and bacterial communities under opencast coal mining disturbance conditions. Catena, 2020, 194: 104779. |
| 5 | Ji C, Huang J, Yu H, et al. Do the reclaimed fungal communities succeed toward the original structure in eco-fragile regions of coal mining disturbances? A case study in North China loess-aeolian sand area. Frontiers in Microbiology, 2022, 13: 770715. |
| 6 | Jiang C, Dong Y H, Meng L Q, et al. Research progress on soybean root rot caused by Fusarium and its biological control. Soybean Science, 2024, 43(5): 656-662. |
| 姜超, 董禹含, 孟利强, 等. 镰孢菌引发的大豆根腐病及其生物防治研究进展. 大豆科学, 2024, 43(5): 656-662. | |
| 7 | Dong Z Y, Rao M P N, Liao T J, et al. Diversity and function of rhizosphere microorganisms between wild and cultivated medicinal plant Glycyrrhiza uralensis Fisch under different soil conditions. Archives of Microbiology, 2021, 203(6): 3657-3665. |
| 8 | Turhong·Nurdong, Yang C, Maimaitimin·Sulaiman. Bryophytes in the Tomur Peak National Nature Reserve. Forestry of Xinjiang, 2023(6): 30-33. |
| 吐尔洪·努尔东, 杨纯, 买买提明·苏来曼. 托木尔峰国家级自然保护区的苔藓植物. 新疆林业, 2023(6): 30-33. | |
| 9 | Dolathan·Tohsun, Turhong·Nurdong, Reyimu·Mamuti, et al. Study on microlichen species diversity in Tuomuer Peak National Nature Reserve, Xinjiang. Journal of Anhui Agricultural Sciences, 2024, 52(9): 87-91. |
| 杜来提罕·托合荪, 吐尔洪·努尔东, 热衣木·马木提, 等. 新疆托木尔峰国家级自然保护区微型地衣多样性研究. 安徽农业科学, 2024, 52(9): 87-91. | |
| 10 | Yong H Y, Turhong·Nurdong, Reyimu·Mamuti, et al. Macrolichen flora and diversity in Tuomuer Peak National Nature Reserve, Xinjiang, China. Journal of Arid Land Resources and Environment, 2024, 38(4): 147-154. |
| 雍海英, 吐尔洪·努尔东, 热衣木·马木提, 等. 新疆托木尔峰国家级自然保护区大型地衣多样性及区系研究. 干旱区资源与环境, 2024, 38(4): 147-154. | |
| 11 | Liu F F, Yang J, Wang G Q, et al. Effects of disturbances on vegetation diversity and soil physicochemical properties of Tomur national nature reserve. Science Technology and Engineering, 2023, 23(7): 2787-2793. |
| 刘霏霏, 杨静, 王国庆, 等. 扰动对托木尔峰国家自然保护区植被多样性和土壤理化性质的影响. 科学技术与工程, 2023, 23(7): 2787-2793. | |
| 12 | Zhao Z X. Diversity of macrofungi in Tomur National Nature Reserve and molecular systematics of important taxa. Alaer: Tarim University, 2022. |
| 赵振西. 托木尔峰国家级自然保护区大型真菌多样性及重要类群分子系统学研究. 阿拉尔: 塔里木大学, 2022. | |
| 13 | Bai Y X, Liu R H, Su J H, et al. Effects of tree species mixing on bulk and rhizosphere soil microbial resource limitation in stands of Pinus massoniana and Castanopsis hystrix. Acta Ecologica Sinica, 2024, 44(23): 10770-10781. |
| 白昱欣, 刘润洪, 苏洁桦, 等. 树种混交对马尾松和红锥根际与非根际土壤微生物资源限制的影响. 生态学报, 2024, 44(23): 10770-10781. | |
| 14 | Bao S D. Soil agrochemical analysis (The Third Edition). Beijing: China Agriculture Press, 2000. |
| 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
| 15 | Li M Y, Wang J L, Zhou Q, et al. Analysis on the rhizosphere fungal community structure of four halophytes in Southern Xinjiang. Acta Ecologica Sinica, 2021, 41(21): 8484-8495. |
| 李明源, 王继莲, 周茜, 等. 南疆四种盐生植物根际土壤真菌群落结构特征. 生态学报, 2021, 41(21): 8484-8495. | |
| 16 | Ma D X, Wang J Q, Lan W L, et al. Response of fungal communities in container seedling substrates of Cunninghamia lanceolata to exponential fertilization. Journal of Sichuan Agricultural University, 2024, 42(2): 388-396. |
| 马东旭, 王佳琪, 蓝伟立, 等. 指数施肥对杉木容器育苗基质真菌群落及功能类群的影响. 四川农业大学学报, 2024, 42(2): 388-396. | |
| 17 | Zhu W Y, Lin M T, Wu Z Y, et al. Diversity and function analysis of endophytic bacteria in Phyllostachys edulis stems at different ages. Journal of Sichuan Agricultural University, 2022, 40(5): 766-774. |
| 朱伟垚, 林梦婷, 吴仲义, 等. 不同竹龄毛竹茎干内生细菌多样性与功能预测. 四川农业大学学报, 2022, 40(5): 766-774. | |
| 18 | Wang L Y, Sun H Z, Yang X. Structure and functional diversity of bacterial community in rhizospere soil of typical vegetation in the riparian zone along the downstream of Songhua River. Environmental Science, 2022, 43(4): 2182-2191. |
| 王露莹, 孙慧珍, 杨雪. 松花江下游滨岸带典型植被根际土壤细菌群落结构与功能多样性. 环境科学, 2022, 43(4): 2182-2191. | |
| 19 | Guo C Q, Yang C, Fu J S, et al. Effects of crop rotation on sugar beet growth through improving soil physicochemical properties and microbiome. Industrial Crops and Products, 2024, 212: 118331. |
| 20 | Zhang X S, Guo P J, Zhang Y L, et al. Community composition and diversity of fungi in reclaimed soil in mining areas under different vegetation restoration types. Mycosystema, 2022, 41(11): 1831-1844. |
| 张旭升, 郭鹏杰, 张瀛澜, 等. 不同植被恢复模式下矿区复垦土壤真菌群落组成及多样性. 菌物学报, 2022, 41(11): 1831-1844. | |
| 21 | Masse J, Hamel C, Bainard L D, et al. Diversification of crops and intensification of canola impact the diversity, community structure, and productivity in successive crop systems: A study on arbuscular mycorrhizal fungal communities in roots and rhizosphere. Agriculture, Ecosystems and Environment, 2025, 377: 109256. |
| 22 | Liu A L, Li Y X, Wang Q Q, et al. Analysis of microbial diversity and community structure of rhizosphere soil of Cistanche salsa from different host plants. Frontiers in Microbiology, 2022, 13: 971228. |
| 23 | Yao T, Hu X L, Jia Y H, et al. Effects of corn stalk biochar on soil physicochemical properties and fungal community structure in the rhizosphere of Gaillardia pulchella Foug. Journal of Southern Agriculture, 2021, 52(4): 942-950. |
| 姚彤, 胡晓龙, 贾永红, 等. 玉米秸秆生物炭对天人菊土壤理化性质及根际土壤真菌群落结构的影响. 南方农业学报, 2021, 52(4): 942-950. | |
| 24 | Li S, Wang D L, Xu S T, et al. Correlation analysis of rhizosphere soil fungal community structure and physicochemical in Aquilaria sinensis (Lour.) Spreng before and after agarwood induction in different planting areas. Chinese Journal of Tropical Crops, 2024, 45(5): 1061-1071. |
| 李思, 王德立, 徐诗涛, 等. 不同种植区白木香结香前后根际土壤真菌群落结构与理化因子相关性分析. 热带作物学报, 2024, 45(5): 1061-1071. | |
| 25 | Li H, Su M D, Huang L P, et al. Effects of nitrogen, phosphorus and potassium application on available nutrients and fungal diversity in tobacco-growing soil. Crops, 2023(3): 238-245. |
| 李航, 苏梦迪, 黄浪平, 等. 氮磷钾配施对植烟土壤速效养分和真菌多样性的影响. 作物杂志, 2023(3): 238-245. | |
| 26 | Koechli C, Campbell A N, Pepe-Ranney C, et al. Assessing fungal contributions to cellulose degradation in soil by using high-throughput stable isotope probing. Soil Biology and Biochemistry, 2019, 130(2019): 150-158. |
| 27 | Qiu Z J, Suo M, Wang Z B, et al. Research progress on the application of Mortierella in sustainable agricul-tural production. Jiangsu Journal of Agricultural Sciences, 2024, 40(4): 762-768. |
| 裘智杰, 索萌, 王照贝, 等. 被孢霉在可持续农业生产中的应用研究进展. 江苏农业学报, 2024, 40(4): 762-768. | |
| 28 | Xi S H, Ming A G, Tan L, et al. Comparison of soil fungal community diversity and functional groups between native tree species and Eucalyptus plantations in south subtropical China. Guihaia, 2024, 44(7): 1232-1244. |
| 席守鸿, 明安刚, 谭玲, 等. 南亚热带乡土树种与桉树人工林土壤真菌群落多样性和功能类群的比较. 广西植物, 2024, 44(7): 1232-1244. | |
| 29 | Liu H Y. Big data analysis of soil microorganisms and evaluation of soil quality in cotton region in Xinjiang. Shihezi: Shihezi University, 2021. |
| 刘海燕. 新疆土壤微生物大数据分析及棉区土壤质量评价. 石河子: 石河子大学, 2021. | |
| 30 | Man B Y, Xiang X, Luo Y, et al. Characteristics and influencing factors of soil fungal community of typical vegetation types in Mount Huangshan, East China. Mycosystema, 2021, 40(10): 2735-2751. |
| 满百膺, 向兴, 罗洋, 等. 黄山典型植被类型土壤真菌群落特征及其影响因素. 菌物学报, 2021, 40(10): 2735-2751. | |
| 31 | Chen W, Wang J, Meng Z, et al. Fertility-related interplay between fungal guilds underlies plant richness-productivity relationships in natural grasslands. New Phytologist, 2020, 226(4): 1129-1143. |
| 32 | Xiong D, Ou J, Li L P, et al. Community composition and ecological function analysis of endophytic fungi in the roots of Rhododendron sismsii in Pinus massoniana forest in central Guizhou. Acta Ecologica Sinica, 2020, 40(4): 1228-1239. |
| 熊丹, 欧静, 李林盼, 等. 黔中地区马尾松林下杜鹃根部内生真菌群落组成及其生态功能. 生态学报, 2020, 40(4): 1228-1239. | |
| 33 | Yang P, Zhai Y P, Zhao X, et al. Effect of arbuscular mycorrhizal fungi and rhizobium inoculation on soil fungal community structure and function in the rhizosphere of Medicago sativa. Pratacultural Science, 2020, 37(9): 1669-1680. |
| 杨盼, 翟亚萍, 赵祥, 等. AM真菌和根瘤菌互作对苜蓿根际土壤真菌群落结构的影响及功能预测. 草业科学, 2020, 37(9): 1669-1680. | |
| 34 | Che Y Y. Study on the growth-promoting and disease-resistant effects of arbuscular mycorrhizal fungi inoculation on Quercus variabilis seedlings. Qufu: Qufu Normal University, 2024. |
| 车钰莹. 接种丛枝菌根真菌对栓皮栎幼苗的促生和抗病作用研究. 曲阜: 曲阜师范大学, 2024. | |
| 35 | Wang F, Dong C X, Zhang Y H. Effects of inoculation with arbuscular mycorrhizal fungial on physiological and secondary metabolite of Oenothera biennis under salt stress. Journal of Northeast Forestry University, 2024, 52(10): 110-118. |
| 王非, 董晨肖, 张玉红. 接种丛枝菌根真菌对盐胁迫下月见草生理及次生代谢产物的影响. 东北林业大学学报, 2024, 52(10): 110-118. | |
| 36 | Zhao Y H, Sun J Q, Sun J S, et al. Community composition of ectomycorrhizal fungi associated with Quercus mongolica in Beijing, China. Acta Agriculturae Boreali-Occidentalis Sinica, 2024, 33(7): 1364-1374. |
| 赵誉涵, 孙佳琦, 孙静双, 等. 北京地区蒙古栎(Quercus mongolica)外生菌根真菌群落特征. 西北农业学报, 2024, 33(7): 1364-1374. |
| [1] | 邓文辉, 宋珂辰, 张浩, 管思雨, 雍嘉仪, 胡海英. 降水变化条件下荒漠草原优势植物根际微生物群落结构和多样性特征研究[J]. 草业学报, 2025, 34(5): 12-26. |
| [2] | 刘文谨, 蒋福祯, 祁凯斌, 宋明丹, 李正鹏. 不同施肥量和播种量对高寒矿区植被恢复和土壤质量的影响及综合评价[J]. 草业学报, 2025, 34(5): 27-39. |
| [3] | 王守兴, 周华坤, 欧立鹏, 李成先, 王雁鹤, 宁晓春, 谷强, 魏代军, 杨明新. 三江源不同草地类型植被及土壤微生物多样性与土壤因子特征的研究[J]. 草业学报, 2025, 34(4): 16-26. |
| [4] | 郑荣春, 南志标, 段廷玉. 四个品种红三叶种带真菌多样性研究[J]. 草业学报, 2024, 33(8): 170-180. |
| [5] | 马源, 王晓丽, 马玉寿, 张德罡. 高寒草甸退化程度对优势物种根际土壤真菌群落和生态网络的影响[J]. 草业学报, 2024, 33(2): 125-137. |
| [6] | 张振粉, 黄荣, 李向阳, 姚博, 赵桂琴. 基于Illumina MiSeq高通量测序的燕麦种带细菌多样性及功能分析[J]. 草业学报, 2023, 32(7): 96-108. |
| [7] | 刘欢, 董凯, 仁增旺堆, 王敬龙, 刘云飞, 赵桂琴. 藏沙蒿与多年生禾草混播对西藏沙化草地植被及土壤真菌群落特征的影响[J]. 草业学报, 2023, 32(6): 45-57. |
| [8] | 田英, 许喆, 朱丽珍, 王俊, 温学飞. 生长季不同月份平茬对柠条人工林地土壤细菌群落特性的影响[J]. 草业学报, 2022, 31(5): 40-50. |
| [9] | 闫晓红, 牛建明, 李元恒, 伊风艳, 孙世贤, 金轲, 李西良. 物种优先效应对植物群落构建的影响及其生态恢复意义[J]. 草业学报, 2022, 31(10): 217-225. |
| [10] | 靳旭妹, 王莹莹, 刘崇义, 陈新义, 龙明秀, 何树斌. 生草对关中地区有机猕猴桃园土壤养分及细菌群落的影响[J]. 草业学报, 2022, 31(10): 53-63. |
| [11] | 任军, 石遥, 刘方, 田蓉, 刘兴. 贵州锰矿废渣堆场重金属污染风险评价及草本植物重金属吸收特征[J]. 草业学报, 2021, 30(8): 86-97. |
| [12] | 马欣, 罗珠珠, 张耀全, 刘家鹤, 牛伊宁, 蔡立群. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54-67. |
| [13] | 魏鹏, 安沙舟, 董乙强, 孙宗玖, 别尔达吾列提·希哈依, 李超. 基于高通量测序的准噶尔盆地荒漠土壤细菌多样性及群落结构特征[J]. 草业学报, 2020, 29(5): 182-190. |
| [14] | 李成一, 李希来, 杨元武, 李宏林, 梁德飞. 氮添加对不同坡度退化高寒草甸土壤细菌多样性的影响[J]. 草业学报, 2020, 29(12): 161-170. |
| [15] | 刘红梅, 杨殿林, 张海芳, 赵建宁, 王慧, 张乃琴. 氮添加对贝加尔针茅草原土壤细菌群落结构的影响[J]. 草业学报, 2019, 28(9): 23-32. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||