草业学报 ›› 2025, Vol. 34 ›› Issue (9): 111-120.DOI: 10.11686/cyxb2024390
• 研究论文 • 上一篇
贺宏1(
), 李晋1, 谭秋怡2, 刘益萍1, 龙桂林1, 潘峰1, 张文富3, 刘兴元4, 周黎5, 张云书1(
)
收稿日期:2024-10-12
修回日期:2024-12-13
出版日期:2025-09-20
发布日期:2025-07-02
通讯作者:
张云书
作者简介:E-mail: zhangxsh828@163.com基金资助:
Hong HE1(
), Jin LI1, Qiu-yi TAN2, Yi-ping LIU1, Gui-lin LONG1, Feng PAN1, Wen-fu ZHANG3, Xing-yuan LIU4, Li ZHOU5, Yun-shu ZHANG1(
)
Received:2024-10-12
Revised:2024-12-13
Online:2025-09-20
Published:2025-07-02
Contact:
Yun-shu ZHANG
摘要:
为准确评价四川省2023年青稞区域试验参试品种的丰产性、稳产性和适应性以及各试点的区分力和代表性,本研究基于R语言的加性主效应和乘积互作效应(AMMI)模型以及基因型主效应和基因型与环境互作(GGE)双标图对参试的14个青稞新品种(系)和5个试点进行了试验数据分析及综合评价。结果表明,青稞产量极显著地受到基因型、环境以及两者之间互作效应的影响;1277和阿青6号是既高产又稳产的品种,适宜在若尔盖县、阿坝县和松潘县种植;1325和10462为高产但稳产性一般的品种,适合在特定区域马尔康市和壤塘县种植。在5个试验点中,阿坝县具有较强的代表性和区分力,是本研究中能筛选高产稳产品种较为理想的试验点。本研究为青藏高原青稞新品种的选育推广及区域试点的选择提供了理论依据。
贺宏, 李晋, 谭秋怡, 刘益萍, 龙桂林, 潘峰, 张文富, 刘兴元, 周黎, 张云书. 基于AMMI模型和GGE双标图对青稞区域试验进行综合评价[J]. 草业学报, 2025, 34(9): 111-120.
Hong HE, Jin LI, Qiu-yi TAN, Yi-ping LIU, Gui-lin LONG, Feng PAN, Wen-fu ZHANG, Xing-yuan LIU, Li ZHOU, Yun-shu ZHANG. Comprehensive evaluation of regional trials for hulless barley based on AMMI model and GGE biplot[J]. Acta Prataculturae Sinica, 2025, 34(9): 111-120.
试点编号 Location code | 试点名称 Location name | 试点地理坐标 Location geographic coordinates | 试点海拔 Location altitude (m) | 年平均气温 Annual average temperature (℃) | 年降水量 Annual precipitation (mm) |
|---|---|---|---|---|---|
| E1 | 阿坝州农业科学技术研究所(马尔康市)Aba Tibetan and Qiang Autonomous Prefecture Institute of Agricultural Science and Technology (Barkam City) | 31°53′40″ N, 102°07′51″ E | 2585.90 | 9.9 | 460.7 |
| E2 | 若尔盖县科学技术和农业畜牧局农技站(若尔盖县)Zoige County Science and Technology and Agricultural Animal Husbandry Bureau Agro-technical Station (Zoige County) | 33°41′33″ N, 103°24′54″ E | 2841.40 | 6.6 | 509.8 |
| E3 | 壤塘县科学技术和农业畜牧局(壤塘县)Zamtang County Science and Technology and Agriculture Animal Husbandry Bureau (Zamtang County) | 32°04′30″ N, 100°58′57″ E | 3280.50 | 7.1 | 407.2 |
| E4 | 阿坝县科学技术和农业畜牧水务局(阿坝县)Aba County Science and Technology and Agriculture Animal Husbandry Water Bureau (Aba County) | 32°55′11″ N, 101°40′09″ E | 3261.40 | 5.3 | 663.9 |
| E5 | 松潘县科学技术和农业畜牧局种子站(松潘县)Songpan County Science and Technology and Agricultural Animal Husbandry Bureau Seed Station (Songpan County) | 32°51′40″ N, 103°39′09″ E | 3081.00 | 6.4 | 638.2 |
表1 5个试验点基本信息
Table 1 Basic information of 5 test sites
试点编号 Location code | 试点名称 Location name | 试点地理坐标 Location geographic coordinates | 试点海拔 Location altitude (m) | 年平均气温 Annual average temperature (℃) | 年降水量 Annual precipitation (mm) |
|---|---|---|---|---|---|
| E1 | 阿坝州农业科学技术研究所(马尔康市)Aba Tibetan and Qiang Autonomous Prefecture Institute of Agricultural Science and Technology (Barkam City) | 31°53′40″ N, 102°07′51″ E | 2585.90 | 9.9 | 460.7 |
| E2 | 若尔盖县科学技术和农业畜牧局农技站(若尔盖县)Zoige County Science and Technology and Agricultural Animal Husbandry Bureau Agro-technical Station (Zoige County) | 33°41′33″ N, 103°24′54″ E | 2841.40 | 6.6 | 509.8 |
| E3 | 壤塘县科学技术和农业畜牧局(壤塘县)Zamtang County Science and Technology and Agriculture Animal Husbandry Bureau (Zamtang County) | 32°04′30″ N, 100°58′57″ E | 3280.50 | 7.1 | 407.2 |
| E4 | 阿坝县科学技术和农业畜牧水务局(阿坝县)Aba County Science and Technology and Agriculture Animal Husbandry Water Bureau (Aba County) | 32°55′11″ N, 101°40′09″ E | 3261.40 | 5.3 | 663.9 |
| E5 | 松潘县科学技术和农业畜牧局种子站(松潘县)Songpan County Science and Technology and Agricultural Animal Husbandry Bureau Seed Station (Songpan County) | 32°51′40″ N, 103°39′09″ E | 3081.00 | 6.4 | 638.2 |
变异来源 Source of variation | 自由度 Degrees of freedom (df) | 平方和 Sum of square (SS) | 均方 Mean square (MS) | F值 F-value | 占总变异SS比例Proportion of total variation SS (%) |
|---|---|---|---|---|---|
| 环境Environment (E) | 4 | 742.71 | 185.68 | 38.46*** | 46.69 |
| 区组Block | 10 | 48.28 | 4.83 | 2.41* | 3.03 |
| 基因型Genotype (G) | 13 | 160.47 | 12.34 | 6.17*** | 10.09 |
| 交互作用Interaction (G×E) | 52 | 379.48 | 7.30 | 3.65*** | 23.85 |
| IPCA1 | 16 | 200.35 | 12.52 | 6.26*** | 52.80 |
| IPCA2 | 14 | 76.96 | 5.50 | 2.75** | 20.28 |
| IPCA3 | 12 | 58.10 | 4.84 | 2.42** | 15.31 |
| 残差Residual | 10 | 44.08 | 4.41 | ||
| 误差Error | 130 | 259.89 | 2.00 | ||
| 总变异Total variation | 209 | 1590.83 | 7.61 |
表2 青稞品种(系)产量方差分析和AMMI模型分析
Table 2 Hulless barley varieties (lines) yield analysis of variance and AMMI model analysis
变异来源 Source of variation | 自由度 Degrees of freedom (df) | 平方和 Sum of square (SS) | 均方 Mean square (MS) | F值 F-value | 占总变异SS比例Proportion of total variation SS (%) |
|---|---|---|---|---|---|
| 环境Environment (E) | 4 | 742.71 | 185.68 | 38.46*** | 46.69 |
| 区组Block | 10 | 48.28 | 4.83 | 2.41* | 3.03 |
| 基因型Genotype (G) | 13 | 160.47 | 12.34 | 6.17*** | 10.09 |
| 交互作用Interaction (G×E) | 52 | 379.48 | 7.30 | 3.65*** | 23.85 |
| IPCA1 | 16 | 200.35 | 12.52 | 6.26*** | 52.80 |
| IPCA2 | 14 | 76.96 | 5.50 | 2.75** | 20.28 |
| IPCA3 | 12 | 58.10 | 4.84 | 2.42** | 15.31 |
| 残差Residual | 10 | 44.08 | 4.41 | ||
| 误差Error | 130 | 259.89 | 2.00 | ||
| 总变异Total variation | 209 | 1590.83 | 7.61 |
图1 AMMI模型分析参试品种的丰产性、稳定性及试点的鉴别力IPCA: 互作主成分Interaction principal component. E1、E2、E3、E4、E5依次表示马尔康市、若尔盖县、壤塘县、阿坝县、松潘县,G1、G2、G3、G4、G5、G6、G7、G8、G9、G10、G11、G12、G13、G14依次表示QK2022-16、QK2022-17、QK2022-19、QK2022-20、1277、1282、1325、10450、10462、13-1036、阿青6号、藏青17、藏青2000、藏青3000。下同。E1, E2, E3, E4 and E5 represent Barkam City, Zoige County, Zamtang County, Aba County, and Songpan County, respectively. G1, G2, G3, G4, G5, G6, G7, G8, G9, G10, G11, G12, G13, and G14 represent QK2022-16, QK2022-17, QK2022-19, QK2022-20, 1277, 1282, 1325, 10450, 10462, 13-1036, Aqing 6, Zangqing 17, Zangqing 2000, and Zangqing 3000, respectively. The same below.
Fig.1 The yield ability, stability and discrimination of the tested varieties were analyzed by AMMI model
品种 Variety | 平均产量 Average yield (kg·20 m-2) | 主成分值 Principle component values | 稳定性参数 Stability parameter (Dg ) | Dg 排序 Dg rank | 产量排序 Yield rank | ||
|---|---|---|---|---|---|---|---|
| PC1 | PC2 | PC3 | |||||
| G1 | 8.60 | 0.383 | 0.327 | -0.346 | 0.61 | 2 | 11 |
| G2 | 9.66 | 0.701 | 0.044 | 0.435 | 0.83 | 4 | 6 |
| G3 | 10.00 | 0.226 | 0.976 | -0.107 | 1.01 | 7 | 3 |
| G4 | 9.45 | 0.389 | 1.016 | -0.492 | 1.19 | 11 | 9 |
| G5 | 9.96 | 0.182 | 0.036 | 0.848 | 0.87 | 5 | 4 |
| G6 | 9.90 | 1.566 | -0.333 | -0.806 | 1.79 | 14 | 5 |
| G7 | 10.23 | 0.268 | -0.857 | 0.232 | 0.93 | 6 | 1 |
| G8 | 9.61 | -0.078 | -0.350 | 0.222 | 0.42 | 1 | 7 |
| G9 | 10.04 | -0.607 | -0.956 | 0.008 | 1.13 | 10 | 2 |
| G10 | 7.09 | -0.246 | 0.681 | 1.278 | 1.47 | 12 | 14 |
| G11 | 9.57 | 0.564 | -0.587 | 0.028 | 0.82 | 3 | 8 |
| G12 | 8.84 | -1.009 | -0.417 | -0.128 | 1.10 | 9 | 10 |
| G13 | 8.09 | -1.536 | 0.298 | -0.463 | 1.63 | 13 | 13 |
| G14 | 8.48 | -0.803 | 0.122 | -0.708 | 1.08 | 8 | 12 |
表3 参试青稞品种(系)产量、主成分值及稳定性参数(Dg )
Table 3 The yield, principal component values and stability parameters (Dg ) of hulless barley varieties (lines)
品种 Variety | 平均产量 Average yield (kg·20 m-2) | 主成分值 Principle component values | 稳定性参数 Stability parameter (Dg ) | Dg 排序 Dg rank | 产量排序 Yield rank | ||
|---|---|---|---|---|---|---|---|
| PC1 | PC2 | PC3 | |||||
| G1 | 8.60 | 0.383 | 0.327 | -0.346 | 0.61 | 2 | 11 |
| G2 | 9.66 | 0.701 | 0.044 | 0.435 | 0.83 | 4 | 6 |
| G3 | 10.00 | 0.226 | 0.976 | -0.107 | 1.01 | 7 | 3 |
| G4 | 9.45 | 0.389 | 1.016 | -0.492 | 1.19 | 11 | 9 |
| G5 | 9.96 | 0.182 | 0.036 | 0.848 | 0.87 | 5 | 4 |
| G6 | 9.90 | 1.566 | -0.333 | -0.806 | 1.79 | 14 | 5 |
| G7 | 10.23 | 0.268 | -0.857 | 0.232 | 0.93 | 6 | 1 |
| G8 | 9.61 | -0.078 | -0.350 | 0.222 | 0.42 | 1 | 7 |
| G9 | 10.04 | -0.607 | -0.956 | 0.008 | 1.13 | 10 | 2 |
| G10 | 7.09 | -0.246 | 0.681 | 1.278 | 1.47 | 12 | 14 |
| G11 | 9.57 | 0.564 | -0.587 | 0.028 | 0.82 | 3 | 8 |
| G12 | 8.84 | -1.009 | -0.417 | -0.128 | 1.10 | 9 | 10 |
| G13 | 8.09 | -1.536 | 0.298 | -0.463 | 1.63 | 13 | 13 |
| G14 | 8.48 | -0.803 | 0.122 | -0.708 | 1.08 | 8 | 12 |
环境 Environment | 平均产量 Average yield (kg·20 m-2) | 主成分值 Principle component values | 稳定性参数 Stability parameter (De ) | De 排序 De rank | 产量排序 Yield rank | ||
|---|---|---|---|---|---|---|---|
| PC1 | PC2 | PC3 | |||||
| E1 | 6.06 | -1.323 | 0.665 | -0.899 | 1.73 | 2 | 5 |
| E2 | 9.90 | 0.679 | 1.412 | -0.245 | 1.59 | 1 | 3 |
| E3 | 8.31 | -1.744 | -0.911 | 0.661 | 2.08 | 4 | 4 |
| E4 | 11.27 | 1.378 | -1.331 | -0.979 | 2.15 | 5 | 1 |
| E5 | 10.70 | 1.010 | 0.165 | 1.462 | 1.78 | 3 | 2 |
表4 青稞区试点的产量、主成分值及稳定性参数(De )
Table 4 The yield, principal component values and stability parameters (De ) of the hulless barley regional test sites
环境 Environment | 平均产量 Average yield (kg·20 m-2) | 主成分值 Principle component values | 稳定性参数 Stability parameter (De ) | De 排序 De rank | 产量排序 Yield rank | ||
|---|---|---|---|---|---|---|---|
| PC1 | PC2 | PC3 | |||||
| E1 | 6.06 | -1.323 | 0.665 | -0.899 | 1.73 | 2 | 5 |
| E2 | 9.90 | 0.679 | 1.412 | -0.245 | 1.59 | 1 | 3 |
| E3 | 8.31 | -1.744 | -0.911 | 0.661 | 2.08 | 4 | 4 |
| E4 | 11.27 | 1.378 | -1.331 | -0.979 | 2.15 | 5 | 1 |
| E5 | 10.70 | 1.010 | 0.165 | 1.462 | 1.78 | 3 | 2 |
| [1] | Xu T W. Classification and identification of varieties of Chinese cultivated barley. Scientia Agricultura Sinica, 1982, 15(6): 39-47. |
| 徐廷文. 中国栽培大麦的分类和变种鉴定. 中国农业科学, 1982, 15(6): 39-47. | |
| [2] | La G, Li M D, Zhang G P, et al. Barley: a potential cereal for producing healthy and functional foods. Food Quality and Safety, 2022(2): 142-154. |
| [3] | Wang Y C, Wang H J, Li B C, et al. GGE-biplot based study on cultivar stability and representativeness of test sites for highland barley. Grassland and Turf, 2018, 38(5): 22-27. |
| 王育才, 王化俊, 李葆春, 等. 基于GGE双标图对青稞区试点代表性及品系稳定性的分析. 草原与草坪, 2018, 38(5): 22-27. | |
| [4] | Lu J, Yu B, Jiang M, et al. Assessment of genetic diversity in 58 highland barley germplasm resources. (2024-08-08)[2024-10-08]. http://kns.cnki.net/kcms/detail/11.1808.S.20240808.0850.008.html. |
| 卢晶, 余波, 江谧, 等. 58份青稞种质资源遗传多样性评价. (2024-08-08)[2024-10-08]. http://kns.cnki.net/kcms/detail/11.1808.S.20240808.0850.008.html. | |
| [5] | Liu M J, Guo J W, Sang A P, et al. Results of regional experiment of highland barley varieties in Gannan Hezuo. Barley and Cereal Sciences, 2015(2): 42-44. |
| 刘梅金, 郭建炜, 桑安平, 等. 青稞品种区域试验甘南合作试点结果. 大麦与谷类科学, 2015(2): 42-44. | |
| [6] | Mou X H. Hulless barley cultivation techniques and promotion strategies of highland barley in Aba Tibetan and Qiang Autonomous Prefecture. The Farmers Consultant, 2021(23): 55-56, 138. |
| 牟学红. 阿坝州青稞高产栽培技术与推广策略. 农家参谋, 2021(23): 55-56, 138. | |
| [7] | Liu T H, Tu Y, Li S Z, et al. Research progress and prospect of highland barley breeding in Sichuan Province. Barley and Cereal Sciences, 2023, 40(4): 1-5, 10. |
| 刘廷辉, 涂洋, 李氏昭, 等. 四川省青稞育种研究进展与展望. 大麦与谷类科学, 2023, 40(4): 1-5, 10. | |
| [8] | Shao Q S, Liang J Z, Yang L, et al. Screening of winter wheat varieties in dry land of mountainous areas of Ningxia based on AMMI model and GGE biplot. Ningxia Journal of Agriculture and Forestry Science and Technology, 2020, 61(4): 1-4. |
| 邵千顺, 梁继忠, 杨琳, 等. 基于AMMI模型和GGE双标图的宁夏山区旱地冬小麦品种筛选试验研究. 宁夏农林科技, 2020, 61(4): 1-4. | |
| [9] | Duan J L, Dong B, Chen G R, et al. Analysis of regional soybean test in Gansu based on AMMI model and GGE biplot. (2024-04-20)[2024-10-08]. http://kns.cnki.net/kcms/detail/46.1068.S.20240418.1738.024.html. |
| 段佳霖, 董博, 陈光荣, 等. 基于AMMI模型和GGE双标图对甘肃大豆区域试验的分析. (2024-04-20)[2024-10-08]. http://kns.cnki.net/kcms/detail/46.1068.S.20240418.1738.024.html. | |
| [10] | Huang D M, Xie X Z, Bai G P, et al. Application of AMMI model and GGE biplot in rape regional trial of Hubei. Hubei Agricultural Sciences, 2018, 57(12): 24-29. |
| 黄大明, 谢雄泽, 白桂萍, 等. AMMI模型和GGE双标图在湖北省油菜区域试验中的应用. 湖北农业科学, 2018, 57(12): 24-29. | |
| [11] | Zhang H J, Wang H J, Ma X L, et al. Yield stability of cultivars and representativeness of test sites in barley regional rest of northen China barley cultivars based on GGE-biplot analysis. Journal of Triticeae Crops, 2015, 35(9): 1250-1256. |
| 张海娟, 王化俊, 马小乐, 等. 基于GGE双标图的北方大麦区试品种稳产性及试点代表性评价. 麦类作物学报, 2015, 35(9): 1250-1256. | |
| [12] | Zhang Z F, Fu X F, Liu J Q, et al. Analysis on site discrimination and yield stability of oat varieties. Journal of Triticeae Crops, 2010, 30(3): 515-519. |
| 张志芬, 付晓峰, 刘俊青, 等. 裸燕麦区域试验中地点鉴别力和育成品种稳产性分析. 麦类作物学报, 2010, 30(3): 515-519. | |
| [13] | Gauch H G, Zobel R W. Identifying mega-environments and targeting genotypes. Crop Science, 1997, 37(2): 311-326. |
| [14] | Yan C L, Bai W Q, Guo C, et al. AMMI model analysis on the stability and adaptability of highland barley variety. Agricultural Research in the Arid Areas, 2016, 34(2): 157-162. |
| 颜昌兰, 白文琴, 郭超, 等. 青稞品种稳定性及适应性的AMMI模型分析. 干旱地区农业研究, 2016, 34(2): 157-162. | |
| [15] | Zhang K D, Zhang F Q, Dong B, et al. Application evaluation of AMMI model and GGE biplot based on R language in soybean regional test. Chinese Agricultural Science Bulletin, 2024, 40(13): 140-145. |
| 张恺东, 张凡巧, 董博, 等. 基于R语言的AMMI模型和GGE双标图在大豆区试中的应用评价. 中国农学通报, 2024, 40(13): 140-145. | |
| [16] | Yan W K, Tinker N A. An integrated biplot analysis system for displaying, interpreting, and exploring genotype×environment interaction. Crop Science, 2005, 45(3): 1004-1006. |
| [17] | Yue H W, Wei J W, Liu P C, et al. Stability and adaptability assessment for the selection of elite maize cultivars based on AMMI model and GGE-biplot. Journal of China Agricultural University, 2024, 29(9): 24-37. |
| 岳海旺, 魏建伟, 刘朋程, 等. 基于AMMI模型和GGE双标图对玉米品种产量稳定性和适应性选择评价. 中国农业大学学报, 2024, 29(9): 24-37. | |
| [18] | Yan W K. Optimal use of biplots in analysis of multi-location variety test data. Acta Agronomica Sinica, 2010, 36(11): 1805-1819. |
| 严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36(11): 1805-1819. | |
| [19] | Zhu Y B, Fan X Q, Ji W T, et al. Comprehensive evaluation of regional trials for the spring maize hybrids in Northwest China based on AMMI model and GGE biplot. Journal of China Agricultural University, 2023, 28(12): 15-24. |
| 朱艳彬, 樊晓琴, 吉闻天, 等. 基于AMMI模型和GGE双标图的西北春玉米品种区域试验综合评价. 中国农业大学学报, 2023, 28(12): 15-24. | |
| [20] | Li W Q, Zhi X G, Zhao J H, et al. Analysis of the maize regional experiment based on the AMMI model and GGE biplot. Journal of Cold-Arid Agricultural Sciences, 2023, 2(7): 607-610. |
| 李伟绮, 支小刚, 赵建华, 等. 基于AMMI模型和GGE双标图的玉米区域试验分析. 寒旱农业科学, 2023, 2(7): 607-610. | |
| [21] | Xie J X, Xiao Z W, Li X, et al. Stability differences of quality traits in high-quality hybrid rice. Journal of Agriculture and Food Research, 2024, 18: 101346. |
| [22] | Mu L H, Chang K Q, Du Y P, et al. Analysis of stable yield adaptability of Fagopyrum tataricum varieties in different climate regions of Ningxia using AMMI model and GGE double label map. Heilongjiang Agricultural Sciences, 2024(2): 8-14. |
| 穆兰海, 常克勤, 杜燕萍, 等. AMMI模型和GGE双标图对宁夏不同气候类型区苦荞品种稳产性适应性分析. 黑龙江农业科学, 2024(2): 8-14. | |
| [23] | Chang S H, Wang J X, Geng Z, et al. Analysis and evaluation of regional test results of soybean based on AMMI and GGE models. (2024-05-09)[2024-10-08]. http://kns.cnki.net/kcms/detail/46.1068.s.20240508.1538.008.html. |
| 常世豪, 王金霞, 耿臻, 等. 基于AMMI和GGE模型对大豆区域试验进行综合评价. (2024-05-09)[2024-10-08]. http://kns.cnki.net/kcms/detail/46.1068.s.20240508.1538.008.html. | |
| [24] | Wang X Y, Cheng J, Gao S, et al. Evaluation of adaptability of naked oat varieties in the alpine region of North China based on the AMMI model and GGE biplot. Acta Prataculturae Sinica, 2022, 31(12): 76-84. |
| 王星宇, 程静, 高生, 等. 应用AMMI模型和GGE双标图评价裸燕麦品种在华北高寒区的适应性. 草业学报, 2022, 31(12): 76-84. | |
| [25] | Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Specifications for the food crop variety trials: NY/T 3923-2021. Beijing: China Agriculture Press, 2021. |
| 中华人民共和国农业农村部. 农作物品种试验规范 粮食作物: NY/T 3923-2021. 北京: 中国农业出版社, 2021. | |
| [26] | Zhang Z, Lu C, Xiang Z H. Analysis of varieties stability based on AMMI model. Acta Agronomica Sinica, 1998, 24(3): 304-309. |
| 张泽, 鲁成, 向仲怀. 基于AMMI模型的品种稳定性分析. 作物学报, 1998, 24(3): 304-309. | |
| [27] | Wan X, Liu Y, Xiao B Z. The adaptability of rice varieties tested in the middle and lower reaches of Yangtze River was analyzed based on AMMI model and GGE biplot. South-Central Agricultural Science and Technology, 2024, 45(1): 7-11, 25. |
| 万星, 刘燚, 肖本泽. 基于AMMI模型和GGE双标图分析长江中下游水稻区试品种的适应性. 中南农业科技, 2024, 45(1): 7-11, 25. | |
| [28] | Guo J W, Xu D L, Wang G P, et al. Stability analysis of hulless barley varieties in multi-year multipoint regional trials in of Gansu based on GGE model. Molecular Plant Breeding, 2024, 22(11): 3677-3684. |
| 郭建炜, 徐冬丽, 王国平, 等. 基于GGE模型对甘肃省青稞多年多点区试品种稳定性分析. 分子植物育种, 2024, 22(11): 3677-3684. |
| [1] | 李雪萍, 许世洋, 李建军, 漆永红. 青稞根腐病根际土壤细菌多样性及群落结构变化规律[J]. 草业学报, 2025, 34(5): 118-129. |
| [2] | 王星宇, 程静, 高生, 李默涵, 杨满霞, 葛军勇, 周海涛, 李云霞, 臧华栋, 左文博. 应用AMMI模型和GGE双标图评价裸燕麦品种在华北高寒区的适应性[J]. 草业学报, 2022, 31(12): 76-84. |
| [3] | 李雪萍, 刘梅金, 许世洋, 郭建炜, 漆永红, 李敏权. 青稞普通根腐病的调查与病原鉴定[J]. 草业学报, 2021, 30(7): 190-198. |
| [4] | 苗建军, 彭忠利, 高彦华, 郭春华, 王鼎, 付洋洋. 青稞替代玉米对育肥牦牛生产性能和肉品质的影响[J]. 草业学报, 2019, 28(1): 95-107. |
| [5] | 贾春旺, 原现军, 肖慎华, 李君风, 白晰, 闻爱友, 郭刚, 邵涛. 青稞秸秆替代苇状羊茅对全混合日粮青贮早期发酵品质及有氧稳定性的影响[J]. 草业学报, 2016, 25(4): 179-187. |
| [6] | 赵庆杰,原现军,郭刚,闻爱友,巴桑,王奇,沈振西,余成群,邵涛. 添加糖蜜和乳酸菌制剂对西藏青稞秸秆和多年生黑麦草混合青贮发酵品质的影响[J]. 草业学报, 2014, 23(4): 100-106. |
| [7] | 原现军,王奇,李志华,余成群,下条雅敬,邵涛. 添加糖蜜对青稞秸秆和多年生黑麦草混合青贮发酵品质及营养价值的影响[J]. 草业学报, 2013, 22(3): 116-. |
| [8] | 原现军,余成群,李志华,下条雅敬,邵涛. 西藏青稞秸秆与多年生黑麦草混合青贮发酵品质的研究[J]. 草业学报, 2012, 21(4): 325-330. |
| [9] | 原现军,余成群,李志华,下条雅敬,邵涛. 添加青稞酒糟对西藏地区青稞秸秆和高羊茅混合青贮发酵品质的影响[J]. 草业学报, 2012, 21(2): 92-98. |
| [10] | 曹宏,章会玲,盖琼辉,陈红,赵满来. 22个紫花苜蓿品种的引种试验和生产性能综合评价[J]. 草业学报, 2011, 20(6): 219-229. |
| [11] | 曹宏,章会玲,马永祥,陈红,方刚,韩霁光,张富忠. 陇东地区紫花苜蓿品种区域试验研究[J]. 草业学报, 2009, 18(3): 184-191. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||