草业学报 ›› 2022, Vol. 31 ›› Issue (12): 76-84.DOI: 10.11686/cyxb2021475
王星宇1(), 程静1, 高生1, 李默涵1, 杨满霞2, 葛军勇1(), 周海涛1, 李云霞1, 臧华栋3, 左文博1
收稿日期:
2021-12-22
修回日期:
2022-04-18
出版日期:
2022-12-20
发布日期:
2022-10-17
通讯作者:
葛军勇
作者简介:
E-mail: gejunyong1987@163.com基金资助:
Xing-yu WANG1(), Jing CHENG1, Sheng GAO1, Mo-han LI1, Man-xia YANG2, Jun-yong GE1(), Hai-tao ZHOU1, Yun-xia LI1, Hua-dong ZANG3, Wen-bo ZUO1
Received:
2021-12-22
Revised:
2022-04-18
Online:
2022-12-20
Published:
2022-10-17
Contact:
Jun-yong GE
摘要:
为全面地评价裸燕麦在华北高寒区的丰产性、稳产性和适应性以及试点的代表性和区分能力,本研究应用AMMI模型和GGE双标图对2019年6个参试品种和6个区试点进行了联合分析与综合评价。结果表明,同时采用AMMI模型和GGE双标图分析评价裸燕麦区域试验,结果更为准确,结论更为全面。影响裸燕麦籽粒产量的变异来源,即基因型、环境以及二者的交互作用均达到了极显著水平,200910-28-4-3(G2)是籽粒丰产稳产性均较好的品种,其次是200910-5-2(G3)和200910-22-1(G4)。从品种区域适应性试点选择来看,内蒙古乌兰察布试点既有很好的代表性又有较强的鉴别力,为最理想的试点,崇礼狮子沟原种场和张北基地作为试点也较为理想。本研究为华北高寒区裸燕麦品种的选育推广及试点布局提供了科学依据。
王星宇, 程静, 高生, 李默涵, 杨满霞, 葛军勇, 周海涛, 李云霞, 臧华栋, 左文博. 应用AMMI模型和GGE双标图评价裸燕麦品种在华北高寒区的适应性[J]. 草业学报, 2022, 31(12): 76-84.
Xing-yu WANG, Jing CHENG, Sheng GAO, Mo-han LI, Man-xia YANG, Jun-yong GE, Hai-tao ZHOU, Yun-xia LI, Hua-dong ZANG, Wen-bo ZUO. Evaluation of adaptability of naked oat varieties in the alpine region of North China based on the AMMI model and GGE Biplot[J]. Acta Prataculturae Sinica, 2022, 31(12): 76-84.
编号 Code | 试验地 Location | 纬度 Longitude | 经度 Latitude | Alt (m) | AAT (℃) | APP (mm) | ST | SF | PC | WT | WTS |
---|---|---|---|---|---|---|---|---|---|---|---|
E1 | 康保县良种场Kangbao Seed Farm | 41o22′N | 114o35′E | 1391 | 2.6 | 347.4 | CS | UM | 白茶White tea | 0 | 2 |
E2 | 崇礼区狮子沟原种场Chongli Shizigou Seed Farm | 41o07′N | 115o24′E | 1472 | 3.7 | 483.3 | CS | MU | 亚麻Flax | 0 | 2 |
E3 | 内蒙古乌兰察布Ulanqab of Inner Mongolia | 43o14ˊN | 117o42′E | 1413 | 4.4 | 384.0 | CS | M | 亚麻Flax | 1 | 2 |
E4 | 内蒙古太仆寺旗Taibus Banner of Inner Mongolia | 42o06′N | 115o42′E | 1425 | 2.3 | 387.2 | CS | M | 亚麻Flax | 0 | 2 |
E5 | 承德市农林科学院Chengde Academy of Agriculture and Forestry Sciences | 40o57′N | 117o51′E | 350 | 4.9 | 435.4 | ABS | M | 马铃薯Potato | 1 | 2 |
E6 | 张家口市张北基地Zhangjiakou Zhangbei base | 41o08′N | 114o45′E | 1450 | 6.7 | 376.6 | CS | M | 豆类Bean | 0 | 2 |
表1 2019年裸燕麦区域试验区试点
Table 1 Regional sites of the oats varieties regional trail in 2019
编号 Code | 试验地 Location | 纬度 Longitude | 经度 Latitude | Alt (m) | AAT (℃) | APP (mm) | ST | SF | PC | WT | WTS |
---|---|---|---|---|---|---|---|---|---|---|---|
E1 | 康保县良种场Kangbao Seed Farm | 41o22′N | 114o35′E | 1391 | 2.6 | 347.4 | CS | UM | 白茶White tea | 0 | 2 |
E2 | 崇礼区狮子沟原种场Chongli Shizigou Seed Farm | 41o07′N | 115o24′E | 1472 | 3.7 | 483.3 | CS | MU | 亚麻Flax | 0 | 2 |
E3 | 内蒙古乌兰察布Ulanqab of Inner Mongolia | 43o14ˊN | 117o42′E | 1413 | 4.4 | 384.0 | CS | M | 亚麻Flax | 1 | 2 |
E4 | 内蒙古太仆寺旗Taibus Banner of Inner Mongolia | 42o06′N | 115o42′E | 1425 | 2.3 | 387.2 | CS | M | 亚麻Flax | 0 | 2 |
E5 | 承德市农林科学院Chengde Academy of Agriculture and Forestry Sciences | 40o57′N | 117o51′E | 350 | 4.9 | 435.4 | ABS | M | 马铃薯Potato | 1 | 2 |
E6 | 张家口市张北基地Zhangjiakou Zhangbei base | 41o08′N | 114o45′E | 1450 | 6.7 | 376.6 | CS | M | 豆类Bean | 0 | 2 |
项目 Item | 变异来源 Source of variation | 自由度 Degrees of freedom (df) | 平方和 Sum of square (SS) | 均方 Mean square (MS) | 百分比Percentage (%) | F值 F-value | 概率 Probability | |
---|---|---|---|---|---|---|---|---|
占总变异 Of total variation | 占交互作用Of interaction | |||||||
方差分析 Analysis of variance | 总的Total | 107 | 115157222.60 | 1076235.73 | - | - | - | - |
基因Genotype (G) | 5 | 9355416.04 | 1871083.21 | 8.12 | - | 14.59** | 0 | |
环境Environment (E) | 5 | 86549103.10 | 17309820.62 | 75.16 | - | 134.98** | 0 | |
交互作用G×E | 25 | 10019505.21 | 400780.21 | 8.70 | - | 3.13** | 0 | |
线性回归分析 Linear regression analysis | 联合Joint | 1 | 1151335.44 | 1151335.43 | - | 11.49 | 8.98** | 0.0037 |
基因Genotype | 4 | 524340.63 | 131085.16 | - | 5.23 | 1.02 | 0.4018 | |
环境Environment | 4 | 2355814.83 | 588953.71 | - | 23.51 | 4.59** | 0.0023 | |
残差Residues | 16 | 5988014.31 | 374250.89 | 59.77 | - | - | ||
AMMI分析 AMMI model | PCA1 | 9 | 5594690.29 | 621632.25 | 55.83 | 5.71** | 0 | |
PCA2 | 7 | 2365961.21 | 337994.46 | 23.61 | 3.10** | 0.0064 | ||
PCA3 | 3 | 1623317.70 | 324663.54 | 16.20 | 2.98* | 0.0168 | ||
残差Residues | 4 | 435536.00 | 108884.00 | 4.35 | - | - |
表2 参试品种籽实产量的方差分析、线性回归分析和AMMI分析
Table 2 Analysis of variance, linear regression analysis and AMMI model of grain yield of the tested varieties
项目 Item | 变异来源 Source of variation | 自由度 Degrees of freedom (df) | 平方和 Sum of square (SS) | 均方 Mean square (MS) | 百分比Percentage (%) | F值 F-value | 概率 Probability | |
---|---|---|---|---|---|---|---|---|
占总变异 Of total variation | 占交互作用Of interaction | |||||||
方差分析 Analysis of variance | 总的Total | 107 | 115157222.60 | 1076235.73 | - | - | - | - |
基因Genotype (G) | 5 | 9355416.04 | 1871083.21 | 8.12 | - | 14.59** | 0 | |
环境Environment (E) | 5 | 86549103.10 | 17309820.62 | 75.16 | - | 134.98** | 0 | |
交互作用G×E | 25 | 10019505.21 | 400780.21 | 8.70 | - | 3.13** | 0 | |
线性回归分析 Linear regression analysis | 联合Joint | 1 | 1151335.44 | 1151335.43 | - | 11.49 | 8.98** | 0.0037 |
基因Genotype | 4 | 524340.63 | 131085.16 | - | 5.23 | 1.02 | 0.4018 | |
环境Environment | 4 | 2355814.83 | 588953.71 | - | 23.51 | 4.59** | 0.0023 | |
残差Residues | 16 | 5988014.31 | 374250.89 | 59.77 | - | - | ||
AMMI分析 AMMI model | PCA1 | 9 | 5594690.29 | 621632.25 | 55.83 | 5.71** | 0 | |
PCA2 | 7 | 2365961.21 | 337994.46 | 23.61 | 3.10** | 0.0064 | ||
PCA3 | 3 | 1623317.70 | 324663.54 | 16.20 | 2.98* | 0.0168 | ||
残差Residues | 4 | 435536.00 | 108884.00 | 4.35 | - | - |
图1 AMMI双标图分析品种的丰产性、稳定性及试点的区分力
Fig.1 Analysis of high-yield and stability of the tested cultivars and discrimination of regional sites by biplot of AMMI model
品种 Cultivars | 平均产量Average yield (kg·hm-2) | 互作主成分Interaction principal component | 稳定性参数 Stability parameter | Di位次 Di rank | 产量位次 Yield rank | ||
---|---|---|---|---|---|---|---|
IPCA1 | IPCA2 | IPCA3 | |||||
G1 | 2388.71 | 8.673 | 21.409 | 12.177 | 26.11 | 4 | 6 |
G2 | 3317.83 | -10.598 | -3.660 | -11.422 | 16.01 | 2 | 1 |
G3 | 2991.88 | 1.939 | 8.005 | -16.584 | 18.52 | 3 | 3 |
G4 | 2887.42 | 0.469 | -1.287 | -1.439 | 1.99 | 1 | 4 |
G5 | 2660.58 | 23.987 | -17.296 | 4.719 | 29.95 | 6 | 5 |
G6 | 3041.17 | -24.469 | -7.172 | 12.549 | 28.42 | 5 | 2 |
表3 区试品种在显著的互作主成分轴上的得分及稳定性参数
Table 3 Scores and stability parameters of the tested varieties in the principal component axis with significant interaction
品种 Cultivars | 平均产量Average yield (kg·hm-2) | 互作主成分Interaction principal component | 稳定性参数 Stability parameter | Di位次 Di rank | 产量位次 Yield rank | ||
---|---|---|---|---|---|---|---|
IPCA1 | IPCA2 | IPCA3 | |||||
G1 | 2388.71 | 8.673 | 21.409 | 12.177 | 26.11 | 4 | 6 |
G2 | 3317.83 | -10.598 | -3.660 | -11.422 | 16.01 | 2 | 1 |
G3 | 2991.88 | 1.939 | 8.005 | -16.584 | 18.52 | 3 | 3 |
G4 | 2887.42 | 0.469 | -1.287 | -1.439 | 1.99 | 1 | 4 |
G5 | 2660.58 | 23.987 | -17.296 | 4.719 | 29.95 | 6 | 5 |
G6 | 3041.17 | -24.469 | -7.172 | 12.549 | 28.42 | 5 | 2 |
区试点 Regional sites | 平均产量 Average yield (kg·hm-2) | 互作主成分Interaction principal component | 稳定性参数 Stability parameter | Di位次 Di rank | 产量位次 Yield rank | ||
---|---|---|---|---|---|---|---|
IPCA1 | IPCA2 | IPCA3 | |||||
E1 | 2996.67 | -3.147 | 18.727 | -3.752 | 19.36 | 5 | 4 |
E2 | 3000.00 | -16.061 | -8.636 | 8.873 | 20.28 | 4 | 3 |
E3 | 2680.42 | -12.758 | 1.972 | -17.953 | 22.11 | 3 | 5 |
E4 | 3142.50 | 26.878 | -11.481 | -8.355 | 30.40 | 1 | 2 |
E5 | 1212.67 | 12.535 | 12.494 | 14.213 | 22.70 | 2 | 6 |
E6 | 4255.33 | -7.447 | -13.076 | 6.974 | 16.59 | 6 | 1 |
表4 区试点在显著的互作主成分轴上的得分及稳定性参数
Table 4 Scores and stability parameters of the trial locations in the principal component axis with significant interaction
区试点 Regional sites | 平均产量 Average yield (kg·hm-2) | 互作主成分Interaction principal component | 稳定性参数 Stability parameter | Di位次 Di rank | 产量位次 Yield rank | ||
---|---|---|---|---|---|---|---|
IPCA1 | IPCA2 | IPCA3 | |||||
E1 | 2996.67 | -3.147 | 18.727 | -3.752 | 19.36 | 5 | 4 |
E2 | 3000.00 | -16.061 | -8.636 | 8.873 | 20.28 | 4 | 3 |
E3 | 2680.42 | -12.758 | 1.972 | -17.953 | 22.11 | 3 | 5 |
E4 | 3142.50 | 26.878 | -11.481 | -8.355 | 30.40 | 1 | 2 |
E5 | 1212.67 | 12.535 | 12.494 | 14.213 | 22.70 | 2 | 6 |
E6 | 4255.33 | -7.447 | -13.076 | 6.974 | 16.59 | 6 | 1 |
1 | Ren C Z, Hu Y G. Chinese oatology. Beijing: China Agriculture Press, 2013: 3-6. |
任长忠, 胡跃高. 中国燕麦学. 北京: 中国农业出版社, 2013: 3-6. | |
2 | Zheng D S, Zhang Z W. Discussion on the origin and taxonomy of naked oat (Avena nuda L.). Journal of Plant Genetic Resources, 2011, 12(5): 667-670. |
郑殿升, 张宗文. 大粒裸燕麦(莜麦)(Avena nuda L.)起源及分类问题的探讨. 植物遗传资源学报, 2011, 12(5): 667-670. | |
3 | Lin D D, Zhao G Q, Ju Z L, et al. Comprehensive evaluation of drought resistance of 15 oat varieties at the seedling stage. Acta Prataculturae Sinica, 2021, 30(11): 108-121. |
蔺豆豆, 赵桂琴, 琚泽亮, 等.15份燕麦材料苗期抗旱性综合评价. 草业学报, 2021, 30(11): 108-121. | |
4 | Zhang Z, Lu C, Xiang Z H.Variety stability analysis based on AMMI model.Acta Agronomica Sinica, 1998, 24(3): 304-309. |
张泽, 鲁成, 向仲怀. 基于AMMI模型的品种稳定性分析. 作物学报, 1998, 24(3): 304-309. | |
5 | Yan W K. Optimal use of biplots in analysis of multi-location variety test data. Acta Agronomica Sinica, 2010, 36(11): 1805-1819. |
严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36(11): 1805-1819. | |
6 | He Q X, Zhou Y M. On application of AMMI model in regional trail of maize in Chongqing. Journal of Southwest China Normal University (Natural Science Edition), 2017, 42(9): 109-115. |
贺清秀, 周彦民. AMMI模型在重庆市玉米区域试验中的应用. 西南师范大学学报(自然科学版), 2017, 42(9): 109-115. | |
7 | Yan W K, Sheng Q L, Hu Y G, et al. GGE biplot an ideal tool for studying genotype by environment interaction of regional yield trail data. Acta Agronomica Sinica, 2001, 27(1): 21-28. |
严威凯, 盛庆来, 胡跃高, 等. GGE叠图法-分析品种×环境互作模式的理想方法. 作物学报, 2001, 27(1): 21-28. | |
8 | Liu N, Cao D, Wang S H, et al. Yield stability and testing-site representativeness of regional trials for spring wheat lines in Gansu based on GGE-biplot. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(4): 39-48. |
柳娜, 曹东, 王世红, 等. 基于GGE双标图的甘肃春小麦区试品系稳产性和试点代表性分析. 西北农林科技大学学报(自然科学版), 2018, 46(4): 39-48. | |
9 | Yue H W, Li C J, Li Y, et al. Comprehensive analysis of yield stability and testing site discrimination of spring sowing maize variety in Hebei province. Journal of Nuclear Agricultural Sciences, 2018, 32(7): 1267-1280. |
岳海旺, 李春杰, 李媛, 等. 河北省春播玉米品种产量稳定性及试点辨别力综合分析. 核农学报, 2018, 32(7): 1267-1280. | |
10 | Lv Z W, Zhang Y J, Zhong Y H, et al. Yield stability and test-site representativeness in regional trials of maize varieties by GGE biplot. Hubei Agricultural Sciences, 2014, 53(15): 3487-3491. |
吕泽文, 张友君, 钟育海, 等. 区域试验玉米品种(系)产量稳定性和适应性的GGE双标图分析. 湖北农业科学, 2014, 53(15): 3487-3491. | |
11 | Zhu Y B, Sun J C, Wang X, et al.Application of AMMI model and GGE-biplot based on Genstat in the analysis of maize regional experiment. Journal of Anhui Agricultural Sciences, 2021, 49(6): 49-53. |
朱艳彬, 孙九超, 王显, 等. 基于Genstat的AMMI模型和GGE双标图在玉米区域试验分析中的应用. 安徽农业科学, 2021, 49(6): 49-53. | |
12 | Li X, Ding Y F, Zuo S M, et al. Evaluation and analysis of the results from the regional trial of medium japonica hybrid rice of Jiangsu Province in 2018 based on the AMMI model and GGE biplot. Hybrid Rice, 2021, 36(3): 96-102. |
李雪, 丁逸帆, 左示敏, 等. 基于AMMI模型和GGE双标图对2018年江苏省水稻杂交中粳品种区域试验结果的评价分析. 杂交水稻, 2021, 36(3): 96-102. | |
13 | Lu Z G, Ding Y F, Xu M, et al. Evaluation analysis for the regional trail of late japonica hybrid cultivars in Jiangsu Province using GGE biplot. Journal of Yangzhou University (Agricultural and Life Science Edition), 2020, 41(5): 9-14. |
陆志刚, 丁逸帆, 许明, 等. 基于GGE双标图对江苏省杂交晚粳品种区域试验的评价分析. 扬州大学学报(农业与生命科学版), 2020, 41(5): 9-14. | |
14 | Cao Y Y, Ding Y F, Zuo S M, et al.Analysis of yielding ability and stability of rice varieties tested in Jiangsu Province based on GGE biplot and AMMI model. Seed, 2021, 40(6): 38-43, 51. |
曹元元, 丁逸帆, 左示敏, 等. 基于GGE双标图和AMMI模型对江苏省水稻区试品种的丰产性和稳定性分析. 种子, 2021, 40(6): 38-43, 51. | |
15 | Zan K, Chen Y G, Xu S X, et al. Application of GGE biplot based on R language in soybean regional test. Soybean Science & Technology, 2019(4): 16-20. |
昝凯, 陈亚光, 徐淑霞, 等. 基于R语言的GGE双标图在大豆区试中的应用. 大豆科技, 2019(4): 16-20. | |
16 | Huang D M, Xie X Z, Bai G P, et al. Application of AMMI model and GGE biplot in rape regional trial of Hubei. Hubei Agricultural Sciences, 2018, 57(12): 24-29. |
黄大明, 谢雄泽, 白桂萍, 等. AMMI模型和GGE双标图在湖北省油菜区域试验中的应用. 湖北农业科学, 2018, 57(12): 24-29. | |
17 | Yan L, Zhang Y X, Gao J H, et al. Analysis of stability and adaptability of the tested varieties based on AMMI model in Hubei Province. Seed, 2020, 39(9): 76-79. |
闫雷, 张远学, 高剑华, 等. 利用AMMI模型分析湖北省区试品种稳定性和适应性. 种子, 2020, 39(9): 76-79. | |
18 | Li Y J, Li D M, Fan S J, et al. Analysis of variety adaptability and yield stability of potato evaluating GGE-biplot application. Journal of Lanzhou University (Natural Sciences), 2016, 52(5): 617-622. |
李亚杰, 李德明, 范士杰, 等. GGE双标图在马铃薯品种适应性及产量稳定性分析中的应用评价. 兰州大学学报(自然科学版), 2016, 52(5): 617-622. | |
19 | Guo M J, Deng L, Ren L, et al.Application of R language base on AMMI model and GGE biplot on regional trial of peanut varieties. Journal of Peanut Science, 2017, 46(2): 24-31. |
郭敏杰, 邓丽, 任丽, 等. 基于R语言的AMMI和GGE双标图在花生区试中的应用. 花生学报, 2017, 46(2): 24-31. | |
20 | Liu W X, He Q L, Zhang F Y, et al. AMMI model analysis on regional trials of large-seeded peanut varieties. Crops, 2020(2): 60-64. |
刘卫星, 贺群岭, 张枫叶, 等. 大粒花生品种区域试验的AMMI模型分析. 作物杂志, 2020(2): 60-64. | |
21 | Chen C J, Zhang S P, Shi S L, et al. Comprehensive evaluation of fertility and stability of alfalfa varieties based on GGE-biplot. Acta Agrestia Sinica, 2021, 29(5): 912-918. |
陈彩锦, 张尚沛, 师尚礼, 等. 基于GGE双标图对苜蓿品种丰产性和稳定性综合评价. 草地学报, 2021, 29(5): 912-918. | |
22 | Luo J, Zhang H, Deng Z H, et al. Analysis of yield and quality traits in sugarcane varieties (lines) with GGE-biplot. Acta Agronomica Sinica, 2013, 39(1): 142-152. |
罗俊, 张华, 邓祖湖, 等. 应用GGE双标图分析甘蔗品种(系)的产量和品质性状. 作物学报, 2013, 39(1): 142-152. | |
23 | Zhou Q L, Duoji D Z, Liu Y F, et al. Analysis of yield stability and adaptability of forage oat hay based on AMMI model. Seed, 2020, 39(6): 79-82. |
周启龙, 多吉顿珠, 刘云飞, 等. 应用AMMI模型分析饲用燕麦干草产量稳定性和适应性. 种子, 2020, 39(6): 79-82. | |
24 | Chai J K, Mu P, Zhao G Q. Study on yield stability and test site representativeness of eight oat varieties in Gansu Province. Acta Agrestia Sinica, 2016, 24(5): 1100-1107. |
柴继宽, 慕平, 赵桂琴. 8个燕麦品种在甘肃的产量稳定性及试点代表性研究. 草地学报, 2016, 24(5): 1100-1107. | |
25 | Frutos E, Galindo M P, Leiva V. An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stochastic Environmental Research and Risk Assessment, 2014, 28(7): 1629-1641. |
26 | Gabriel K R. Least squares approximation of matrices by additive and multiplicative models. Journal of the Royal Statistical Society: Series B (Methodological), 1978, 40(2): 186-196. |
27 | Zhang Z F, Fu X F, Liu J Q, et al. Analysis on site discrimination and yield stability of oat varieties. Acta Agronomica Sinica, 2010, 36(8): 1377-1385. |
张志芬, 付晓峰, 刘俊青, 等. 用GGE双标图分析燕麦区域试验品系产量稳定性及试点代表性. 作物学报, 2010, 36(8): 1377-1385. |
[1] | 沈吉成, 王蕾, 赵彩霞, 叶发慧, 吕士凯, 刘德梅, 刘瑞娟, 张怀刚, 陈文杰. 77份裸燕麦品种籽粒相关性状分析[J]. 草业学报, 2022, 31(3): 156-167. |
[2] | 聂秀美, 慕平, 赵桂琴, 何海鹏, 吴文斌, 蔺豆豆, 苏伟娟, 张丽睿. 贮藏年限对裸燕麦种带真菌和真菌毒素的影响[J]. 草业学报, 2021, 30(6): 106-120. |
[3] | 刘建新, 刘瑞瑞, 贾海燕, 卜婷, 李娜. NaHS引发提高裸燕麦种子活力的生理机制[J]. 草业学报, 2021, 30(2): 135-142. |
[4] | 刘建新, 刘瑞瑞, 贾海燕, 刘秀丽, 卜婷, 李娜. 外源半胱氨酸缓解裸燕麦镧胁迫的生理机制[J]. 草业学报, 2021, 30(11): 122-131. |
[5] | 刘建新, 欧晓彬, 王金成, 刘瑞瑞, 贾海燕. 镉胁迫下裸燕麦幼苗对外源H2O2的生理响应[J]. 草业学报, 2020, 29(1): 125-134. |
[6] | 王茜, 李志坚, 李晶, 周帮伟. 不同类型燕麦农艺和饲草品质性状分析[J]. 草业学报, 2019, 28(12): 149-158. |
[7] | 耿帆, 周青平, 梁国玲, 贾志锋, 刘文辉, 丁成翔, 刘勇, 颜红波. 8个大粒裸燕麦品种核型研究[J]. 草业学报, 2016, 25(3): 120-125. |
[8] | 刘文辉. 高寒地区播期对三种裸燕麦品种灌浆特性影响的研究[J]. 草业学报, 2016, 25(3): 143-153. |
[9] | 刘建新, 王金成, 王瑞娟, 贾海燕. 外源一氧化氮提高裸燕麦幼苗的耐碱性[J]. 草业学报, 2015, 24(8): 110-117. |
[10] | 葛剑, 杨翠军, 刘贵河, 杨志敏, 白雪梅. 添加剂和混合比例对裸燕麦和紫花苜蓿混贮品质的影响[J]. 草业学报, 2015, 24(6): 116-124. |
[11] | 葛剑,杨翠军,杨志敏,白雪梅,赵海香,刘贵河. 紫花苜蓿和裸燕麦混贮发酵品质和营养成分分析[J]. 草业学报, 2015, 24(4): 104-113. |
[12] | 吴娜,胡跃高,任长忠,刘吉利. 两种灌溉方式下保水剂用量对春播裸燕麦土壤氮素的影响[J]. 草业学报, 2014, 23(2): 346-351. |
[13] | 郭孝,介晓磊,胡华锋,李建平,李明,黄安群,石志芳. 基施硒肥对裸燕麦营养水平的影响[J]. 草业学报, 2013, 22(1): 53-59. |
[14] | 吴娜,卜洪震,曾昭海,任长忠,胡跃高. 灌溉定额对夏播裸燕麦产量和品质的影响[J]. 草业学报, 2010, 19(5): 204-209. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 139
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 279
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||