Reference:[1]Jiang D Y, Yu Z W. Effects of soil water on yield and grain quality of Wheat[J]. Journal of Nuclear Agriculturae Sciences, 2007, 21(6): 641-645.[2]Fu Q S, Li H L, Cui J, et al. Effects of water stress on photosynthesis and associated physiological characters of Capsicum annuum L.[J]. Scientia Agricultura Sinica, 2009, 42(5): 1859-1866.[3]Sunilkumar G, Mohr L, Lopata Finch E, et al. Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP[J]. Plant Molecular Biology, 2002, 50: 463-474.[4]Ji W, Li J, Zhu Y M, et al. Transfermation of DREB1A gene regulated by different promoters into cucumber[J]. Journal of Northeast Agricultural University, 2005, 36(4): 442-447.[5]Hou B K, Xia G M, Chen Z H. Strategies for optimizing expression vectors used in plant genetic engineering[J]. Hereditas, 2001, 23(5): 492-497.[6]Courtois B, McLaren G, Sinha P K, et al. Mapping QTL associated with drought avoidance in upland rice[J]. Molecular Breeding, 2000, 6: 55-66.[7]Zhao H W, Chen Y J, Hu Y L, et al.Construction of a Trehalose-6-phosphate synthase gene driven by drought responsive promoter and expression of drought resistance in transgenic tobacco[J]. Acta Botanica Sinica, 2000, 46(6): 616-619.[8]Sunkar R, Barteles D, Kirch H H. Over expression of a stress inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance[J]. Plant Journal, 2003, 35: 452-464.[9]Jiang X M, Huang M R, Wang M M. A review on salt and drought resistance gene engineering in plants[J]. Journal of Nanjing Forestry University, 2001, 25(5): 57-62.[10]Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought and salt stress[J]. Plant Cell, 2002, 14: 2165-2183.[11]Wan X R, Mo A Q, Liu S, et al. Molecular cloning and gus-aided activity assaying of promoter sequence of ahnced1 gene from Arachis hypogaea L.cv.Yueyou 7[J]. Acta Agriculturae Nucleatae Sinica, 2011, 25(4): 692-699. [12]Shinozaki K, Yamaguchi S K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways[J]. Plant Biology, 2000, 3: 217-223.[13]Liu Q, Zhao Nan M, Yamaguch-Shinozaki K, et al. The role of DREB transcription factors in improving plant resistance[J]. Chinese Science Bulletin, 2000, 45(1): 11-15.[14]Huang R F, Yang Y H, Wang X C. Molecular Mechanism of Plant Responses to Low Temperature[J]. Journal of Agricultural Biotechnology, 2001, 9(1): 92-96.[15]Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression in Arabidopsis[J]. Plant Cell, 1998, (10): 1391-1406.[16]Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress inducible transcription factor[J]. Nature Biotechnology, 1999, 17: 287-292.[17]Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual Preview of Plant Biology, 2002, 53: 245-273. [18]Seki M, Narusaka M, Abe H, et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full length cDNA micro array[J]. Plant Cell, 2001, 13: 61-72.[19]Fowler S, Thomashow M F. Arabidopsis transcription profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway[J]. Plant Cell, 2002, 14: 1675-1690.[20]Maruyama K, Sakhma Y, Kasuga M, et al. Identification of cold-inducible down stream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems[J]. Plant Journal, 2004, 38: 982-993.[21]Wang S X, Wang Z Y, Peng Y K. Dehydration responsive element binding (dreb) transcription activator and its function in plant tolerance to environmental stresses[J]. Plant Physiology Communications, 2004, 40(1): 7-13.[22]Jia X X, Zhang J W, Wang H N, et al. Construction of plant expression vectors containing two anti-fungal and one anti-herbicide genes and their expression in transgenic tobacco[J]. Acta Prataculturae Sinica, 2009, 18(1): 86-93.[23]Liu Y, Cai H, Liu J, et al. Transformation of the GsCRCK gene into Medicago sativa cv. Nongjing No.1 and salt tolerance analysis in transgenic plants[J]. Acta Prataculturae Sinica, 2013, 22(2): 150-157.[24]Yang J F, Guo Z F, Yang J. Cloning and characteristics of 9-cis-epoxycarotenoid dioxygenase gene (SgNCED1) from Stylosanthes guianensis[J]. Acta Prataculturae Sinica, 2007, 16(3): 21-28.[25]Zheng L L, Zhang H R, He L M, et al. Isolation and expression analysis of a plasma membrane Na+/H+ antiporter from Nitraria tangutorum[J]. Acta Prataculturae Sinica, 2013, 22(4): 179-186.[26]Francoise A B, Céline S, Fabrice R, et al. Repression of formate dehydrogenase in Solanum tuberosum increases steadv state levels of form ate and accelerates the accumulation of praline in response to osmotic stress[J]. Plant Molecular Biology, 2003, 52: 1153-1168.[27]Zhang N, Si H J, Li L, et al. Drought and salinity tolerance in Transgenic Potato expressing the Betaine Aldehyde Dehydrogenase gene[J]. Acta Agronomica Sinica, 2009, 35(6): 1146-1150.[28]Ren A Q, Yi J, Gao H W, et al. Cloning and expression analysis of the promoter of Caragana korshinskii gene[J]. Acta Prataculturae Sinica, 2013, 22(4): 165-170.[29]Cheng S N, Liu J, Xie C H, et al. Role of tobacco vacuolar invertase regulated by patatin promoter in resistance of potato tubers to cold-sweetening[J]. Journal of Agricultural Biotechnology, 2006, 14(5): 716-720.参考文献:[1]姜东燕, 于振文. 土壤水分对小麦产量和品质的影响[J]. 核农学报, 2007, 21(6): 641-645.[2]付秋实, 李红岭, 崔健, 等. 水分胁迫对辣椒光合作用及相关生理特性的影响[J]. 中国农业科学, 2009, 42(5): 1859-1866.[3]Sunilkumar G, Mohr L, Lopata-Finch E,et al. Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP[J]. Plant Molecular Biology, 2002, 50: 463-474.[4]纪巍, 李杰, 朱延明, 等. 不同启动子调控的DREB1A基因对黄瓜的遗传转化[J]. 东北农业大学学报, 2005, 36(4): 442-447.[5]侯丙凯, 夏光敏, 陈正华. 植物基因工程表达载体的改进和优化策略[J]. 遗传, 2001, 23(5): 492-497.[6]Courtois B, McLaren G, Sinha P K,et al. Mapping QTL associated with drought avoidance in upland rice[J]. Molecular Breeding, 2000, 6: 55-66.[7]赵恢武, 陈杨坚, 胡鸢雷, 等. 干旱诱导性启动子驱动的海藻糖-6-磷酸合酶基因载体的构建及转基因烟草的耐旱性[J]. 植物学报, 2000, 46(6): 616-619.[8]Sunkar R, Barteles D, Kirch H H. Over-expression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance[J]. Plant Journal, 2003, 35: 452-464.[9]江香梅, 黄敏仁, 王明麻. 植物抗盐碱、耐干旱基因工程研究进展[J]. 南京林业大学学报(自然科学版), 2001, 25(5): 57-62.[10]Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought and salt stress[J]. Plant Cell, 2002, 14: 2165-2183.[11]万小荣, 莫爱琼, 刘帅, 等. 粤油7号花生AhNCED1基因启动子克隆及其活性分析[J]. 核农学报, 2011, 25(4): 692-699. [12]Shinozaki K, Yamaguchi S K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways[J]. Plant Biology, 2000, 3: 217-223.[13]刘强, 赵南明, Yamaguch-Shinozaki K, 等. DREB转录因子在提高植物抗逆性中的作用[J]. 科学通报, 2000, 45(1): 11-15.[14]黄荣峰, 杨宇红, 王学臣. 植物对低温胁迫响应的分子机理[J]. 农业生物技术学报, 2001, 9(1): 92-96.[15]Liu Q, Kasuga M, Sakuma Y,et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression in Arabidopsis[J]. Plant Cell, 1998, (10): 1391-1406.[16]Kasuga M, Liu Q, Miura S,et al. Improving plant drought,salt and freezing tolerance by gene transfer of a single stress inducible transcription factor[J]. Nature Biotechnology, 1999, 17: 287-292.[17]Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual Preview of Plant Biology, 2002, 53: 245-273. [18]Seki M, Narusaka M, Abe H,et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA micro array[J]. Plant Cell, 2001, 13: 61-72.[19]Fowler S, Thomashow M F. Arabidopsis transcription profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway[J]. Plant Cell, 2002, 14: 1675-1690.[20]Maruyama K, Sakhma Y, Kasuga M,et al. Identification of cold-inducible down stream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems[J]. Plant Journal, 2004, 38: 982-993.[21]王少峡, 王振英, 彭永康. DREB转录因子及其在植物抗逆中的作用[J]. 植物生理学通讯, 2004, 40(1): 7-13.[22]贾小霞, 张金文, 王汉宁, 等. 抗真菌和抗除草剂基因多价植物表达载体构建及对烟草遗传转化的研究[J]. 草业学报, 2009, 18(1): 86-93.[23]刘莹, 才华, 刘晶, 等. GsCRCK基因转化农菁1号苜蓿及其耐盐性分析[J]. 草业学报, 2013, 22(2): 150-157.[24]杨锦芬, 郭振飞, 杨静. 柱花草9-顺式环氧类胡萝卜素双加氧酶基因(SgNCED1)的克隆及表达分析[J]. 草业学报, 2007, 16(3): 21-28.[25]郑琳琳, 张慧荣, 贺龙梅, 等. 唐古特白刺质膜Na+/H+ 逆向转运蛋白基因的克隆与表达分析[J]. 草业学报, 2013,22(4); 179-186.[26]Francoise A B, Céline S, Fabrice R,et al. Repression of formate dehydrogenase in Solanum tuberosum increases steadv-state levels of form ate and accelerates the accumulation of praline in response to osmotic stress[J]. Plant Molecular Biology, 2003, 52: 1153-1168.[27]张宁, 司怀军, 栗亮, 等. 转甜菜碱醛脱氢酶基因马铃薯的抗旱耐盐性[J]. 作物学报, 2009, 35(6): 1146-1150.[28]任爱琴, 易津, 高洪文, 等. 柠条锦鸡儿CkNCED1基因启动子的克隆及表达分析[J]. 草业学报, 2013, 22(4): 165-170.[29]成善汉, 柳俊, 谢从华, 等. Patatin启动子调控烟草液泡转化酶抑制子在马铃薯抗低温糖化中的作用[J]. 农业生物技术学报, 2006, 14(5): 716-720. |