[1] Intergovernmental Panel on Climate Change. Climate Change 2007: The Physical Science Basis. The Fourth Assessment Report of Working Group [R/OL]. (2007-05-14)[2008-01-12]. http://www.Ipcc. Ch/cited. [2] Schimel D S, Braswell B H, McKeown R, et al. Climate and nitrogen controls on the geography and timescales of terrestrial biogeiochemical cycling[J]. Global Biogeochemistry Cycle, 1996, 10(7): 677-692. [3] Cox P M, Bestt R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle Feedbacks in a coupled climate model[J]. Nature, 2000, 408: 184-187. [4] Rustad L, Campbell, Marion G, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and above ground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(6): 543-562. [5] Melillo J M, Steudler P A, Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science, 2002, 298(13): 2173-2176. [6] 王文颖, 王启基, 王刚. 高寒草甸土地退化及其恢复重建对植被碳、氮含量的影响[J]. 植物生态学报, 2007, 31(6): 1073-1078. [7] 闫敏华, 邓伟, 马学慧. 大面积开荒扰动下的三江平原近45年气候变化[J]. 地理学报, 2001, 56(2): 159-170. [8] Rustad L E, Fernandez I J. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA[J]. Global Change Biology, 1998, 4: 597-605. [9] Thomas K, Anton F, Markus B R. Short-term effects of temperature enhancement on growth and reproduction of alpine grassland species[J]. Basic and Applied Ecology, 2008, 9: 263-274. [10] Shaver G R, Canadell J, Chapin F S, et al. Tree and forest functioning in response to global warming[J]. New Phytologist, 2001, 149(4): 369-399. [11] John B, Pandey H N, Tripathi R S. Decomposition of fine roots of Pines kesiya and turnover of organic matter, N and P of coarse and fine pine roots and herbaceous roots and rhizomes in subtropical pine forests stands of different ages[J]. Biology Fertilization Soils, 2002, 35(4): 238-246. [12] Fang C, Moncrieff J B. The dependence of soil CO2 efflux on temperature[J]. Soil Biology & Biochemistry, 2001, 33: 155-165. [13] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 12-14, 308-314. [14] Jonasson S, Castro J, Michelsen A. Litter, warming and plants affect respiration and allocation of soil microbial and plant C, N and P in arctic mesocosms[J]. Soil Biology & Biochemistry, 2004, 36: 1129-1139. [15] Rustad L, Campbell, Marion G, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and above ground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(6): 543-562. [16] Gough L, Hobbie S E. Responses of moist nonacidic arctic tundra to altered environment: Productivity, biomass, and species richness[J]. Oikos, 2003, 103: 204-216. [17] Van C K, Oechel W C, Hom J L. Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior Alaska[J]. Canadian Journal of Forest Research, 1990, 20: 1530-1535. [18] 白军红, 王庆改, 丁秋袆,等. 不同芦苇沼泽湿地土壤全氮季节动态变化和氮储量研究[J]. 草业学报, 2008, 17(2): 162-165. [19] Seppo K, Wang K. Effects of long-term CO2 and temperature elevation on crown nitrogen distribution and daily photosynthetic performance of Scotspne[J]. Forest Ecology and Management, 1997, 15(3): 309-326. [20] Davidt T, Robertb M, David M. Elevated CO2 and temperature alter nitrogen allocation in Douglasfir[J]. Global Change Biology, 2003, 9(7): 1038-1050. [21] Koerselman W, Meuleman A F M. Vegetation N∶P ratio: A review[J]. Environmental Pollution, 2003, 124: 179-221. [22] 孙志高, 刘景双, 杨继松. 三江平原小叶章湿地种群生物量结构动态与生长速率分析[J]. 草业学报, 2006, 15(2): 21-29. [23] 廖建雄, 王根轩. CO2和温度升高及干旱对小麦叶片化学成分的影响[J]. 植物生态学报, 2000, 24(6): 744-747. [24] 王丽, 胡金明, 宋长春. 水分梯度对三江平原典型湿地植物小叶章地上生物量的影响[J]. 草业学报, 2008, 17(4): 19-25. [25] 王海洋, 陈家宽, 周进. 水分梯度对湿地植物生长、繁殖和生物量分配的影响[J]. 植物生态学报, 1999, 23(3): 269-274. [26] 邰建辉, 王彦荣, 陈谷. 无芒隐子草种子萌发、出苗和幼苗生长对土壤水分的响应[J]. 草业学报, 2008, 17(3): 105-110. [27] 曲涛, 南志标. 作物和牧草对干旱胁迫的响应及机理研究进展[J]. 草业学报, 2008, 17(2): 126-135. [28] 王丽, 宋长春, 胡金明, 等. 不同时期毛苔草对不同水文情势的生长响应研究[J]. 草业学报, 2009, 18(1): 17-24. [29] 张铜会, 赵哈林, 李玉霖, 等. 科尔沁沙地灌溉与施肥对退化草地生产力的影响[J]. 草业学报, 2008, 17(1): 36-42.
|