[1] Su D X, Zhang Z H, Chen Z Z, et al . GB 19377-2003 Parameters for Degradation, Sandification and Salification of Rangelands[S]. Beijing: Chinese Standards Press, 2003. [2] Xie G D, Lu C X, Leng Y F, et al . Ecological assets valuation of the Tibetan Plateau. Journal of Natural Resources, 2003, 18(2): 189-195. [3] Xie G D, Lu C X, Xiao Y, et al . The economic evaluation of grassland ecosystem services in Qinghai-Tibet Plateau. Journal of Mountain Science, 2003, 21(1): 50-55. [4] Piao S L, Fang J Y. Terrestrial net primary production and its spatio-temporal patterns in Qinghai-Xizang Plateau, China during 1982-1999. Journal of Nature Resource, 2002, 17(3): 373-380. [5] Yan Y C, Tang H P. Differentiation of related concepts of grassland degradation. Acta Prataculturae Sinica, 2008, 17(1): 93-99. [6] Chen Q G. Grassland deterioration in the source region of the Yangtze-Yellow rivers and integrated control of the ecological environment. Acta Prataculturae Sinica, 2007, 16(1): 10-15. [7] Gao Q Z, Li Y E, Lin E D, et al . Temporal and spatial distribution of grassland degradation in Northern Tibet. Acta Geographica Sinica, 2005, 60(6): 965-973. [8] Liu J Y, Xu X L, Shao Q Q. The spatial and temporal characteristics of grassland degradation in the Three-River Headwaters Region in Qinghai Province. Acta Geographica Sinica, 2008, 63(4): 364-376. [9] Zhang J E, Liu W G. Utilization of microbes resources and sustainable development of agriculture. Soil and Environmental Science, 2001, 10(2): 154-157. [10] Chen X R, Nan Z B. Bacterial diversity and its role in agricultural ecosystems. Pratacultural Science, 2002, 39(9): 34-38. [11] Li X, Wang Y C. The biodiversity of soil microbes and plants. Acta Scientiarum Naturalium Universitatis Neimongol, 2006, 37(6): 708-713. [12] Wang X P, Li X R, Xiao H L, et al . Evolution characteristics of the artificially re-vegetated shrub ecosystem of arid and semi-arid sand dune area. Acta Ecologica Sinica, 2005, 25(8): 1974-1980. [13] Wang X L, Xu L G, Yao X, et al . Analysis on the soil microbial biomass in typical hygrophilous vegetation of Poyang Lake. Acta Ecologica Sinica, 2010, 30(18): 5033-5042. [14] Zong N, Shi P L, Jiang J, et al . Interactive effects of short-term nitrogen enrichment and simulated grazing on ecosystem respiration in an alpine meadow on the Tibetan Plateau. Acta Ecologica Sinica, 2013, 33(19): 6191-6201. [15] Xu G H, Zheng H Y. Manual of Soil Microorganism Analysis[M]. Beijing: Agricultural Press, 1986. [16] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology Biochemistry, 1987, 19(6): 703-707. [17] Brookes P C, Andrea L, Pruden G, et al . Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology Biochemistry, 1985, 12(6): 837-842. [18] Zhou H K, Zhao X Q, Zhou L, et al . A study on correlations between vegetation degradation and soil degradation in the 'Alpine Meadow' of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2005, 14(3): 31-40. [19] Gong Y M, Hu Y K, Maidi A, et al . Alpine grassland community characteristics at the different stages of degenerating succession in Bayanbulak. Journal of Arid Land Resource and Environment, 2010, 24(6): 149-152. [20] Hao J E. Study on the Number of Soil Microbes and Microbial Biomass Carbon Under Different Successional Stages of Vegetation Community in Yangtze and Yellow Rivers Source Region[D]. Xining: Qinghai University, 2010: 8. [21] Zhou H S, Yang G W, Liu N, et al . Plant community and soil microbial characteristics in typical grasslands of different degradation degrees. Pratacultural Science, 2014, 31(1): 30-38. [22] Wu X, Li Z H, Fu B J, et al . Restoration of ecosystem carbon and nitrogen storage and microbial biomass after grazing exclusion in semi-arid grasslands of Inner Mongolia. Ecological Engineering, 2014, 73: 395-403. [23] Li Y Y, Dong S K, Wen L, et al . Soil carbon and nitrogen pools and their relationship to plant and soil dynamics of degraded and artificially restored grasslands of the Qinghai-Tibetan Plateau. Geoderma, 2014, 213: 178-184. [24] Wen L, Dong S K, Li Y Y, et al . The impact of land degradation on the C pools in alpine grasslands of the Qinghai-Tibet Plateau. Plant and Soil, 2013, 368(1-2): 329-340. [25] Niu D C, Jiang S G, Qin Y, et al . Effects of grazing and fencing on soil microorganisms and enzymes activities. Pratacultural Science, 2013, 30(4): 528-534. [26] Wang C Y, Zhang J J, Lu Y L, et al . Effects of long-term grazing exclusion on soil organic carbon fractions in the grasslands of Inner Mongolia. Acta Prataculturae Sinica, 2014, 23(5): 31-39. [27] Wei W D, Liu Y H. The influence of different degraded degradation of alpine steppe in source area of Lantsang, Yellow and Yangtze River on soil respiration. Hubei Agricultural Sciences, 2014, (8): 1102-1106. [28] Xiong L, Xu Z F, Wu F Z, et al . Effects of stepping on soil respiration of Zoysia matrella lawn during the winter dormancy period. Acta Prataculturae Sinica, 2014, 23(2): 83-89. [29] Zhu W X, Suo N J, Gu Z K, et al . Soil properties associated with microbe in different types of Gannan grassland. Pratacultural Science, 2012, 29(10): 1491-1496. [30] Ma W W, Yao T, Jin P, et al . Characteristics of microorganisms and enzyme activity under two plant communities in Desert Steppe. Journal of Desert Research, 2014, 34(1): 176-183. [31] Zhang Y X, Yao T, Wang G J, et al . Characteristics of vegetation and soil inorganic nitrogen concentrations under different disturbed habitats in a weak alpine ecosystem. Acta Prataculturae Sinica, 2014, 23(4): 245-252. [32] Lu H, Li X G, Yao T, et al . Characteristics of vegetation and soil microorganisms of molehill grassland in an ecologically vulnerable alpine region. Acta Prataculturae Sinica, 2014, 23(5): 214-222. [33] Hu L, Wang C T, Wang G X, et al . Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwater region of Three Rivers, China. Acta Prataculturae Sinica, 2014, 23(3): 8-19. [34] Zhao H L, Zhao X Y, Zhang T H, et al . Study on bio-processes in desertification in Northern Agro-Pasture Interzone. Journal of Desert Research, 2002, 22(4): 309-315. [35] Shang Z H, Ding L L, Long R J, et al . Relationship between soil microorganisms, above-ground vegetation, and soil environment of degraded alpine meadows in the headwater areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2007, 16(1): 34-40. [36] McSherry M E, Ritchie M E. Effects of grazing on grassland soil carbon: a global review. Global Change Biology, 2013, 19, (5): 1347-1357. [1] 苏大学, 张自和, 陈佐忠, 等. GB 19377-2003天然草地退化、沙化、盐渍化的分级指标[S]. 北京: 中国标准出版社, 2003. [2] 谢高地, 鲁春霞, 冷允法, 等. 青藏高原生态资产的价值评估. 自然资源学报, 2003, 18(2): 189-195. [3] 谢高地, 鲁春霞, 肖玉, 等. 青藏高原高寒草地生态系统服务价值评估. 山地学报, 2003, 21(1): 50-55. [4] 朴世龙, 方精云. 1982~1999年青藏高原植被净第一性生产力及其时空变化. 自然资源学报, 2002, 17(3): 373-380. [5] 闫玉春, 唐海萍. 草地退化相关概念辨析. 草业学报, 2008, 17(1): 93-99. [6] 陈全功. 江河源区草地退化与生态环境的综合治理. 草业学报, 2007, 16(1): 10-15. [7] 高清竹, 李玉娥, 林而达, 等. 藏北地区草地退化的时空分布特征. 地理学报, 2005, 60(6): 965-973. [8] 刘纪远, 徐新良, 邵全琴. 近30年来青海三江源地区草地退化的时空特征. 地理学报, 2008, 63(4): 364-376. [9] 章家恩, 刘文高. 微生物资源的开发利用与农业可持续发展. 土壤与环境, 2001, 10(2): 154-157. [10] 陈秀蓉, 南志标. 细菌多样性及其在农业生态系统中的作用. 草业科学, 2002, 39(9): 34-38. [11] 李骁, 王迎春. 土壤微生物多样性与植物多样性. 内蒙古大学学报(自然科学版), 2006, 37(6): 708-713. [12] 王新平, 李新荣, 肖洪浪, 等. 干旱半干旱地区人工固沙灌木林生态系统演变特征. 生态学报, 2005, 25(8): 1974-1980. [13] 王晓龙, 徐立刚, 姚鑫, 等. 鄱阳湖典型湿地植物群落土壤微生物量特征. 生态学报, 2010, 30(18): 5033-5042. [14] 宗宁, 石培礼, 蒋婧, 等. 短期氮素添加和模拟放牧对青藏高原高寒草甸生态系统呼吸的影响. 生态学报, 2013, 33(19): 6191-6201. [15] 许光辉, 郑洪元. 土壤微生物分析方法手册[M]. 北京:农业出版社, 1986. [18] 周华坤, 赵新全, 周立, 等. 青藏高原高寒草甸的植被退化与土壤退化特征研究. 草业学报, 2005, 14(3): 31-40. [19] 公延明, 胡玉昆, 阿德力·麦地, 等. 巴音布鲁克高寒草地退化演替阶段植物群落特性研究. 干旱区资源与环境, 2010, 24(6): 149-152. [20] 郝金娥. 江河源区不同植被演替阶段土壤微生物数量及微生物生物量碳的特性[D]. 西宁: 青海大学, 2010. 8. [21] 周翰舒, 杨高文, 刘楠, 等. 不同退化程度的草地植被和土壤特征. 草业科学, 2014, 31(1): 30-38. [25] 牛得草, 江世高, 秦燕, 等. 围封与放牧对土壤微生物和酶活性的影响. 草业科学, 2013, 30(4): 528-534. [26] 王春燕, 张晋京, 吕瑜良, 等. 长期封育对内蒙古羊草草地土壤有机碳组分的影响. 草业学报, 2014, 23(5): 31-39. [27] 魏卫东, 刘育红. 三江源区高寒草原不同退化程度对土壤呼吸的影响. 湖北农业科学, 2014, (8): 1102-1106. [28] 熊莉, 徐振锋, 吴福忠, 等. 踩踏对亚热带沟叶结缕草草坪冬季休眠期土壤呼吸的影响. 草业学报, 2014, 23(2): 83-89. [29] 朱炜歆, 索南吉, 顾振宽, 等. 甘南草地土壤微生物与理化特性. 草业科学, 2012, 29(10): 1491-1496. [30] 马文文, 姚拓, 靳鹏, 等. 荒漠草原2种植物群落土壤微生物及土壤酶特征. 中国沙漠, 2014, 34(1): 176-183. [31] 张玉霞, 姚拓, 王国基, 等. 高寒生态脆弱区不同扰动生境草地植被及土壤无机氮变化特征. 草业学报, 2014, 23(4): 245-252. [32] 卢虎, 李显刚, 姚拓, 等. 高寒生态脆弱区“黑土滩”草地植被与土壤微生物数量特征研究. 草业学报, 2014, 23(5): 214-222. [33] 胡雷, 王长庭, 王根绪, 等. 三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化. 草业学报, 2014, 23(3): 8-19. [34] 赵哈林, 赵学勇, 张铜会, 等. 北方农牧交错区沙漠化的生物过程研究. 中国沙漠, 2002, 22(4): 309-315. [35] 尚占环, 丁玲玲, 龙瑞军, 等. 江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系. 草业学报, 2007, 16(1): 34-40. |