[1] Bertin R I, Kerwin M A. Floral sex ratios and gynomonoecy in Aster (Asteraceae). American Journal of Botany, 1998, 85: 235-244. [2] Bertin R I, Gwisc G M. Floral sex ratios and gynomonoecy in Solidago (Asteraceae). Biological Journal of the Linnean Society, 2002, 77: 413-422. [3] Zhang G F, Xie T P, Du G Z. Variation in floral sex allocation, female success, and seed predation within racemiform synflorescence in the gynomonoecious Ligularia virgaurea (Asteraceae). Journal of Plant Research, 2012, 125: 527-538. [4] Yampolsky C, Yampolsky H. Distribution of sex forms in the phanerogamic flora. Bibliotheca Genetica, 1922, 3: 1-62. [5] Lu Y, Huang S Q. Adaptive advantages of gynomonoecious species. Acta Phytotaxonomica Sinica, 2006, 44(2): 231-239. [6] Leppik E E. The evolution of capitulum types of the Compositae in the light of insect-flower interaction. In: Heywood V H, Harbone J B, Turner B L. The Biology and Chemistry of the Compositae[M]. London: Academic Press, 1977: 61-89. [7] Mani M S, Saravanan J M. Pollination Ecology and Evolution in Compositae (Asteraceae)[M]. New Hampshire: Science Publishers, 1999. [8] Charnov E L, Bull J. When is sex environmentally determined. Nature, 1977, 266: 828-830. [9] Willson M F. Plant Reproductive Ecology[M]. New York: John Wiley and Sons, 1983. [10] Vallius E. Position-dependent reproductive success of flowers in Dactylorhiza maculate (Orchidaceae). Functional Ecology, 2000, 14: 573-579. [11] Hiraga T, Sakai S. The effects of inflorescence size and flower position on biomass and temporal sex allocation in Lobelia sessiliflora . Plant Ecology, 2007, 188: 205-214. [12] Zhao Z G, Meng J L, Fan B L, et al . Reproductive patterns within racemes in protandrous Aconitum gymnandrum (Ranunculaceae): potential mechanism and among-family variation. Plant Systematics and Evolution, 2008, 273: 247-256. [13] Ashman T L, Hitchens M S. Dissecting the causes of variation in intra-inflorescence allocation in a sexually polymorphic species Fragaria virginiana (Rosaceae). American Journal of Botany, 2000, 87: 197-204. [14] Buide M L. Intra-inflorescence variation in floral traits and reproductive success of the hermaphrodite Silene acutifolia . Annals of Botany, 2004, 94: 441-448. [15] Buide M L. Disentangling the causes of intra-inflorescence variation in floral traits and fecundity in the hermaphrodite Silene acutifolia . American Journal of Botany, 2008, 95: 490-497. [16] Guitián J, Navarro L. Allocation of reproductive resources within the inflorescences of Petrocoptis grandiflora (Caryophyllaceae). Canadian Journal of Botany, 1996, 74: 1482-1486. [17] Medrano M, Guitián P, Guitián J. Patterns of fruit and seed set within inflorescences of Pancratium maritimum (Amaryllidaceae): nonuniform pollination, resource limitation, or architectural effects. American Journal of Botany, 2000, 87: 493-501. [18] Susko D J, Lovett-Doust L. Patterns of seed mass variation and their effects on seeding traits in Alliaria petiolata (Brassicaceae). American Journal of Botany, 2000, 87: 56-66. [19] Ishii H S, Sakai S. Temporal variation in floral display size and individual floral sex allocation in racemes of Narthecim asiaticum (Liliaceae). American Journal of Botany, 2002, 89: 441-446. [20] Guitián J, Guitián P, Medranol M. Causes of fruit set variation in Polygonatum odoratum (Liliaceae). Plant Biology, 2001, 3: 637-641. [21] Obeso J R. Seed mass variation in the perennial herb Asphodelus albus : sources of variation and position effect. Oecologia, 1993, 93: 571-575. [22] Diggle P K, Miller J S. Architectural effects mimic floral sexual dimorphism in Solanum (Solanaceae). American Journal of Botany, 2004, 91: 2030-2040. [23] Miller J S, Diggle P K. Diversification of andromonoecy in Solanum section Lasiocarpa (Solanaceae): the roles of phenotypic plasticity and architecture. American Journal of Botany, 2003, 90: 707-715. [24] Narbona E, Dirzo R. Experimental defoliation affects male but not female reproductive performance of the tropical monoecious plant Croton suberosus (Euphorbiaceae). Annals of Botany, 2010, 106: 359-369. [25] Lin L, Li Y K, Zhang F W, et al . A study on carbon storage administration in alpine Kobresia humilis meadow in relation to influence of human acitivity. Acta Prataculturae Sinica, 2013, 22(1): 308-314. [26] Wang J B, Zhang D G, Cao G M, et al . Regional characteristics of the alpine meadow degradation succession on the Qinghai-Tibetan Platean. Acta Prataculturae Sinica, 2013, 22(2): 1-10. [27] Chen W Y, Zhang J, Qi D C, et al . Desertification dynamic change trend and quantitative analysis of driving factors of alpine meadow in Maqu County in the First Meander of the Yellow River. Acta Prataculturae Sinica, 2013, 22(2): 11-21. [28] Ma R J, Du G Z, Lu B R, et al . Reproductive modes of three Ligularia weeds (Asteraceae) in grasslans in Qinghai-Tibet Plateau and their implications for grassland management. Ecology Research, 2006, 21: 246-254. [29] Bertin R I. The ecology of sex expression in red buckeye. Ecology, 1982, 63: 445-456. [30] Torices R, Méndez M, Gómez J M. Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of Angiosperms. New Phytologist, 2011, 190: 238-248. [31] Diggle P K. Architectural effects and the interpretation of patterns of fruit and seed development. Annual Review of Ecology and Systematics, 1995, 26: 531-552. [32] Berry P E, Calvo R N. Pollinator dependence and position dependent fruit set in the high Andean orchid Myrosmodes cochleare (Orchidaceae). Plant Systematics and Evolution, 1991, 174: 93-101. [33] Brunet J, Charlesworth D. Floral sex allocation in sequentially blooming plants. Evolution, 1995, 49: 70-79. [34] Emms S K. Andromonoecy in Zigadenus paniculatus (Liliaceae): spatial and temporal patterns of sex allocation. American Journal of Botany, 1993, 80: 914-923. [35] Lloyd D G. Sexual strategies in plants. I. An hypothesis of serial adjustment of maternal investment during one reproductive session. New Phytologist, 1980, 86: 69-79. [36] Abbott R J, Schmitt J. Effect of environment on percentage female ray florets per capitulum and outcrossing potential in a self-compatible composite ( Senecio vulgaris L. var. hibernicus Syme). New Phytologist, 1985, 101: 219-229. [37] Collin C L, Shykoff J A. Outcrossing rates in the gynomonoecious-gynodioecious species Dianthus sylvestris (Caryophyllaceae). American Journal of Botany, 2003, 90: 579-585. [38] Bertin R I, Newman C M. Dichogamy in angiosperms. The Botanical Review, 1993, 59: 112-152. [39] Zhang D Y. Plant Life-history Evolution and Reproductive Ecology[M]. Beijing: Science Press, 2003. [40] Marshall D F, Abbott R J. Polymorphism for outcrossing frequency at the ray floret locus in Senecio vulgaris L. III. Causes. Heredity, 1984, 53: 145-149. [5] 卢洋, 黄双全. 论雌花两性花同株植物的适应意义. 植物分类学报, 2006, 44(2): 231-239. [25] 林丽, 李以康, 张法伟, 等. 人类活动对高寒矮嵩草草甸的碳容管理分析. 草业学报, 2013, 22(1): 308-314. [26] 王建兵, 张德罡, 曹广民, 等.青藏高原高寒草甸退化演替的分区特征. 草业学报, 2013, 22(2): 1-10. [27] 陈文业, 张瑾, 戚登臣, 等. 黄河首曲-玛曲县高寒草甸沙化动态演变趋势及其驱动因子定量分析. 草业学报, 2013, 22(2): 11-21. [39] 张大勇. 植物生活史进化与繁殖生态学[M]. 北京: 科学出版社, 2003. |